微生物学报  2023, Vol. 63 Issue (1): 85-105   DOI: 10.13343/j.cnki.wsxb.20220355.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220355
中国科学院微生物研究所,中国微生物学会

文章信息

蔡淑珍, 吴磊, 谢新强, 陈惠元, 吴清平. 2023
CAI Shuzhen, WU Lei, XIE Xinqiang, CHEN Huiyuan, WU Qingping.
肠道微生物群在人类健康衰老中的作用机制研究进展
Mechanism of gut microbiota in human healthy aging
微生物学报, 63(1): 85-105
Acta Microbiologica Sinica, 63(1): 85-105

文章历史

收稿日期:2022-05-09
网络出版日期:2022-10-08
肠道微生物群在人类健康衰老中的作用机制研究进展
蔡淑珍1 #, 吴磊1,2 #, 谢新强1 , 陈惠元3,4 , 吴清平1     
1. 广东省科学院微生物研究所 华南应用微生物国家重点实验室 广东省微生物安全与健康重点实验室 农业农村部农业微生物组学与精准应用重点实验室, 广东 广州 510070;
2. 广东药科大学附属第一医院, 广东 广州 510080;
3. 广东环凯生物科技有限公司, 广东 肇庆 510663;
4. 广东科环生物科技有限公司, 广东 广州 510525
摘要:衰老的特征是组织器官的功能衰退以及衰老相关疾病风险的增加,这给维护和促进健康长寿带来一系列新的挑战。尽管进行了广泛的衰老相关研究,但进展有限。人们越来越意识到肠道微生物群的结构和功能积极参与了衰老过程。肠道微生物群紊乱表现为许多与年龄相关的肠外器官轴的衰老。肠道微生物群可以被调节,这暗示了通过肠道微生物群抗衰老是一个可以实现的重要目标。本综述总结了肠道微生物群在不同年龄段中的动态演替,这种动态的肠道微生物群从胎儿到出生和婴儿期开始迅速发展,从断奶期到幼儿期迅速变化,然后建立稳定的成年人菌群,直到随着年龄增长最后发生衰退;肠道微生物群与肠外器官轴(大脑、心脏、肝脏、胰腺、肌肉、皮肤和骨骼)衰老相关疾病,以及通过饮食、粪菌移植和微生态制剂调节肠道微生物群靶向抗衰老的研究进展,以期为调控肠道微生物群抗衰老研究提供参考。
关键词肠道微生物群    健康衰老    肠外器官轴    衰老疾病    抗衰老    
Mechanism of gut microbiota in human healthy aging
CAI Shuzhen1 #, WU Lei1,2 #, XIE Xinqiang1 , CHEN Huiyuan3,4 , WU Qingping1     
1. State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China;
2. The First Affiliated Hospital Guangdong Pharmaceutical University, Guangzhou 510080, Guangdong, China;
3. Guangdong Huankai Biotechnology Co., Ltd., Zhaoqing 510663, Guangdong, China;
4. Guangdong Kehuan Biotechnology Co., Ltd., Guangzhou 510525, Guangdong, China
Abstract: Aging is characterized by hypofunction of tissues and organs and increased risk of related diseases, which poses a series of challenges to the health and longevity. Despite extensive basic research on aging, the progress is limited. There is a growing awareness that the structure and function of the gut microbiota are involved in the aging. Disturbed gut microbiota manifests itself in the aging of many age-related extraintestinal organ axes. Gut microbiota can be modulated, suggesting anti-aging can be realized through gut microbiota. This study summarizes the dynamic succession of gut microbiota in different age groups. This dynamic gut microbiota develops rapidly from the fetus through birth and infancy, changes rapidly from weaning to early childhood, and then establishes a stable adult microbiota until it finally declines with age. Moreover, the research on the gut microbiota and aging-related diseases of the extraintestinal organ axis (brain, heart, liver, pancreas, muscle, skin, and bone), and targeted anti-aging by modulating the gut microbiota through diet, fecal microbiota transplantation, and microecologics is also summed up. This review is expected to provide a reference for research on anti-aging via gut microbiota.
Keywords: gut microbiota    healthy aging    extraintestinal organ axis    aging-related diseases    anti-aging    

人口老龄化问题日益严峻,已成为全球重大的公共卫生问题。中国60岁以上老年人口目前占总人口的18.1%,达到2.54亿,到2050年将占近35%[1]。如此庞大的老年人口将影响整个社会的经济发展。同时,全球人类预期寿命从1990年的64.2岁增加到2019年的72.6岁,预计2050年将进一步增加到77.1岁[2]。但是,寿命的延长不等于健康的衰老[3],因此,患上与衰老相关疾病的风险急剧增加[4],严重威胁老年人的身心健康。研究衰老机理,预防衰老相关疾病,探索延缓衰老的新方法,实现健康长寿的新目标,已成为我国当前新形势下人民群众以及“健康中国2030”的新要求。

传统上,人类寿命被认为主要由遗传因素决定,其次是环境和生活方式等[5-6],而居住在人类肠道中的共生微生物(肠道微生物群)与衰老的关系一直被忽视。从出生开始,肠道微生物群随着年龄的增长而共同进化,它们驱动机体免疫系统的成熟,从而有助于宿主健康。有研究报道老化的肠道微生物群会导致肠道炎症和宿主代谢紊乱[7-8]。正如诺贝尔奖得主埃利·梅契尼科夫在1907年提出的,衰老是由于人体某些肠道微生物群的产物对人体的毒害,他坚信控制肠道微生物群可以延长寿命[9]。近年来,肠道微生物群在人类衰老过程中的关键作用引起了人们的广泛关注。越来越多的证据表明,人类肠道微生物群在健康和疾病中发挥着不可或缺的作用。肠道微生物群的结构、多样性和功能越来越多地被认为是建立和维持健康状态的关键因素,因此它经常被称为“被遗忘的器官”[10]。大数据时代,在多组学等高通量测序技术的推动下,肠道微生物群对人类衰老的影响已成为微生物学研究的一个重要转折点。尽管衰老过程是必然的,但人类肠道微生物群靶向调控衰老是一种促进健康、抗衰老的新思路,有效调节人体肠道微生物群已成为促进健康长寿的新途径。

本文综述了肠道微生物群在不同年龄段中的动态演替、肠道微生物群与衰老相关疾病以及肠道微生物群靶向抗衰老等方面的研究进展,以期为靶向调节肠道微生物群的抗衰老研究提供参考。

1 肠道微生物群在不同年龄段中的动态演替

微生物演替被定义为微生物随宿主或生境改变而随时间变化的某种有序和可预测的方式。肠道微生物群在整个人类生命周期内都是动态的,肠道微生物群稳态的建立经历了物种与年龄相关的渐进演替[11],这是由内部宿主特性和外部因素共同驱动的[12]。在大数据时代,高通量多组学技术可以对微生物群落和栖息地进行前所未有的详细研究[13]。这种动态的肠道微生物群从胎儿到出生和婴儿期开始迅速发展,从断奶期到幼儿期迅速变化,然后建立稳定的成年人菌群,直到随着年龄增长最后发生衰退,我们将其分为4个阶段:初始阶段、过渡阶段、稳定阶段和衰退阶段(图 1)。

图 1 肠道微生物群在不同年龄段中的动态演替 Figure 1 Dynamic succession of gut microbiota at different ages.

1.1 初始阶段肠道微生物群

肠道微生物群定殖的初始阶段取决于分娩方式、胎龄、抗生素暴露和母乳喂养等因素[14]。分娩方式通常被认为是决定初始定殖的主要因素。顺产新生儿的肠道微生物群与母亲的阴道和肠道微生物群相似,主要为乳杆菌、双歧杆菌和普雷沃氏菌组成,而剖腹产婴儿的肠道微生物群与母亲的皮肤和口腔菌群相似,主要为链球菌、葡萄球菌和丙酸杆菌[15]。出生时的胎龄是出生后早期肠道微生物群结构的另一个重要影响因素。Hesla等发现,早产儿的肠道微生物群中变形菌门的含量明显更高,变形菌门包括大多数肠道致病菌,如埃希氏菌属、沙门氏菌属和克雷伯菌属等;而足月婴儿在第1周时的肠道微生物群中厚壁菌门和放线菌门的相对比例较高[16],其中,大部分属于有益菌,如厚壁菌门的乳杆菌属、乳球菌属和明串菌属等可产生有益代谢物和抗菌物质,防止病原菌干扰健康;属于放线菌门的双歧杆菌有助于改善消化问题和提高免疫力等。出生前后接触抗生素会迅速降低母体肠道微生物群的多样性和丰富性,从而限制了母体微生物向新生儿的转移[17]。母婴接触抗生素,尤其是产时预防,会影响剖腹产和早产儿早期生命菌群的建立[18],使用抗生素对肠道微生物群的影响大于胎龄[19]

母乳喂养是影响早期肠道定殖的重要因素。人乳低聚糖和糖蛋白可以促进有益微生物的生长,包括双歧杆菌和拟杆菌,但不包括肠杆菌科等致病菌[20],这在新生儿期激活免疫功能中很重要[21]。除了营养上的好处,母乳中的微生物群是婴儿肠道双歧杆菌等细菌的主要直接来源[22]。研究显示纯母乳喂养和配方奶喂养的婴儿的肠道微生物群差异很大,母乳喂养组的双歧杆菌增多,克雷伯菌和沙门氏菌减少[23]。了解婴儿时期人类肠道中的这一过程,可能有助于制定相应策略,指导促进健康的肠道微生物群的形成。

1.2 过渡阶段肠道微生物群

在过渡阶段的断奶期间,肠道微生物群的组成和结构发生了显著的变化。从纯母乳饮食逐渐转变为包括其他食物的饮食对婴儿来说是一个特殊而关键的时期[24]。其他食物的引入导致了肠道微生物群发展的一个新阶段,其特征是细菌数量和种类大幅增加,并朝着更像成年人肠道微生物群的组成演替[25]。由于采用补充各种新颖的食品和营养物质,断奶期间细菌α多样性增加,导致婴儿肠道微生物群的主要成员由厚壁菌门和拟杆菌门取代变形菌门和放线菌门[26]

大量研究报道,在从婴儿到幼儿过渡阶段,补充食物喂养的婴儿中富含毛螺菌科、疣微菌科和真杆菌科,而双歧杆菌科、放线菌科和韦荣氏菌科等下降[27]。幼儿肠道微生物群的这些差异可能是由于断奶期间引入了不同的食品成分。具体来说,富含蛋白质和纤维食物的摄入与α多样性的增加有关。蛋白质摄入量的增加与毛螺菌科丰度的增加和双歧杆菌科等糖化细菌的减少有关,而纤维摄入量与普雷沃氏菌水平的提高有关[28]。此外,Yassour等发现,柔嫩梭菌和嗜黏蛋白阿克曼氏菌在婴儿期早期要么不存在,要么存在非常低的水平,在1岁和2岁分别增加到成年水平[29],这些变化与断奶期间碳水化合物摄入量的增加有关。

1.3 稳定阶段肠道微生物群

经过初始阶段和关键的过渡阶段之后,人类肠道微生物群发展为成年人相对稳定的结构和组成[30]。肠道微生物群发展到稳定阶段可能需要较长的时间[31]。稳定的肠道微生物群具有较高的细菌多样性以及厚壁菌门和拟杆菌门等优势菌[32]。与前两个阶段以双歧杆菌为主不同,拟杆菌属和真杆菌属是成年人肠道微生物群中最常见的细菌类群,被定义为成年人肠道微生物群的核心菌群。尽管这些属可能是正常肠道细菌群落的一部分,但肠道拟杆菌属数量的增加与幼儿较高的身体质量指数有关,韦荣氏球菌属可能与不同类型的感染有关[33]

根据核心微生物群,成人型肠道微生物群可分为3种肠型:拟杆菌属、普雷沃菌属和瘤胃球菌属[34]。这3种肠型代表了人类肠道微生物群的多种稳定状态,每一种通常都是有弹性的。健康肠道微生物群的弹性保护,使我们免受与肠道微生态失调相关的疾病,这表明肠道微生物群恢复力在健康和疾病中具有关键作用[35]。因此,肠道微生物群健康、稳定的状态是宿主健康的关键环节。

1.4 衰退阶段肠道微生物群

衰老是影响肠道微生物群组成与功能的主要内在因素。许多研究发现,与年龄相关的肠道微生物群组成的变化包括物种多样性下降、变形菌门水平升高和放线菌门水平降低,这些变化可能与对病原体易感性增加和肠道黏膜屏障障碍有关[36]。一般来说,肠道微生物群的多样性随着年龄的增长而下降,尤其是老年人。长期补充双歧杆菌可增强衰老大鼠的记忆力。厚壁菌门和拟杆菌门之间的比率可以作为健康的指标,并且随着年龄的增长而降低[37]。根据使用人类和动物模型的研究,肠道微生物群的组成是与长寿相关的重要因素[38]。最值得注意的是,老年人的拟杆菌门比例较高,而年轻人的厚壁菌门比例较高,因此厚壁菌门/拟杆菌门比例的下降是一个衰老指标[39]

最近的研究发现,衰老的特征是亚优势物种数量的增加,以及它们共存网络的重新排列[40]。健康老年人的肠道微生物群显示出高丰度的与健康相关的群体,如阿克曼氏菌、双歧杆菌和克里斯滕森菌科[41]。百岁老人是健康老龄化的典范,这些百岁老人的肠道微生物群与老年人(60−80岁)不同,与一般年轻相关的肠道微生物群趋势一致。嗜黏蛋白阿克曼氏菌通常被认为是健康肠道微生物群的标志,与其他年龄组(年轻组20−40岁,老年组60−80岁)相比,在百岁老人肠道微生物群中显著增加[42-43]。中国研究人员也观察到拟杆菌属、疣微菌科和脱硫弧菌属与巴马健康老年人的年龄和生活区域均存在相关性[44]

在老年人中,肠道微生物群因炎症引起的疾病和衰弱过程与宿主免疫稳态有关[45]。免疫衰老通常伴随着炎症反应的上调,在衰老过程中,肠道微生物群的持续失衡导致肠黏膜发生炎症反应[46]。在老年人中,已检测到特定的肠道微生物群表型,如具有抗炎和免疫调节作用的细菌数量减少,包括厚壁菌门、拟杆菌门和梭菌门等,这些细菌的减少可能促进了常见疾病和衰老有关疾病的发生[47]

我们研究表明,长寿相关菌株属水平上主要有阿克曼氏菌、甲烷短杆菌、另枝菌属和乳杆菌属等;长寿老人肠道微生物群中具有较高丰度的与健康相关的群体阿克曼氏菌、乳杆菌属和克里斯滕森菌科;长寿老人肠道微生物群具有较强的氧化还原酶活性和外源性物质生物降解能力[48]。这些肠道微生物群及其相应功能的非健康变化会触发先天免疫衰老反应和慢性炎症[49],导致许多与年龄相关的退行性病变和不健康衰老[50]。这或许可以解释肠道微生物群对健康和衰老的潜在影响。

在微生物组研究中至少结合两种组学方法可促进衰老微生物组生物标志物的发现。一项分析人体血液样本中代谢物的研究表明,随着年龄的增长肠道微生物群中与吲哚和色氨酸代谢相关的细菌显著减少[51]。色氨酸在肠道免疫耐受和维持肠道微生物群平衡中起着关键性的作用,色氨酸代谢的增强与年龄呈正相关,有研究表明老年人血清中色氨酸水平低[52]。总之,微生物组学是诊断老年疾病、发现新的临床干预措施和建立衰老生物标志物的另一个有前途的领域。

2 肠道微生物群与人类衰老疾病

肠道微生物群从出生到老年的动态演替会影响宿主整个生命周期的健康和疾病。肠道系统提供与身体其他组织和器官的功能连接,例如大脑、心脏、肝脏、胰腺、肌肉、皮肤和骨骼,称为肠道-肠外器官轴。与年龄相关的肠道微生物群变化似乎会影响肠道内和肠道外疾病的发生发展。鉴于肠道微生物群在人体中的重要性,提出肠道微生物群与肠外器官轴衰老(图 2),这种肠外器官轴的衰老可以理解为肠道与肠外器官之间互作关系的减弱,也可能是劣变增强或是失调。

图 2 肠道微生物群与肠外器官轴衰老 Figure 2 Gut microbiota and extraintestinal organ axis aging.

2.1 肠-脑轴

肠−脑轴是指肠道与大脑之间的双向功能交流。双向交流意味着它们中的每一个都有能力通过神经、免疫、内分泌或体液进行连接,从而影响其他功能。肠-脑轴将大脑的认知和情绪中心与外周肠道功能(即免疫激活、肠道反射、肠道通透性和肠内分泌信号传导)联系起来。肠-脑轴涉及中枢神经系统,包括大脑和脊髓;自主神经系统(autonomic nervous system, ANS),具有交感神经和副交感神经的肢体;肠神经系统(enteric nervous system, ENS)和下丘脑-垂体-肾上腺(hypothalamus-pituitary-adrenal gland, HPA)。现在人们已经认识到,肠道微生物群是大脑和行为的关键调节器。在老年人中,阿尔茨海默病(Alzheimer’s disease, AD)和帕金森病(Parkinson’s disease, PD)等疾病与肠道微生物群的变化有关。

AD是一种与年龄相关的神经退行性疾病,长期以来一直与细菌感染和引起炎症的免疫衰老有关[53]。老年AD患者的肠道微生物群结构和组成显著改变,可增加肠道通透性并诱发炎症,增加AD的风险[54]。Zhuang等的临床研究发现,与对照组相比,AD患者疣微菌科、肠球菌科和乳杆菌科的相对丰度增加,而毛螺菌科、拟杆菌科和韦荣氏菌科的相对丰度显著降低[55]。另一项临床研究表明,AD患者拟杆菌的减少,尤其是脆弱拟杆菌的减少与认知障碍显著相关[56]。一项动物研究发现,双歧杆菌对焦虑小鼠的认知能力有积极的影响[57]。Sun等的动物实验表明,通过粪便微生物群移植(fecal microbiota transplant, FMT)调节肠道微生物群可以通过降低Tau蛋白的磷酸化和Aβ40和Aβ42的水平以及增加突触可塑性来改善认知缺陷并减少β淀粉样蛋白(Aβ)的脑沉积[58]。然而,我们发现这些临床和动物研究大多集中在肠道微生物群与AD之间的关系,缺乏确定准确的因果关系研究以阐明肠道微生物群在AD的发展中的作用机制。

PD是老龄化人口日益关注的另一个健康问题。这种退行性疾病影响中枢神经系统,最终影响运动系统。Qian等将中老年PD患者与同年龄段健康人群肠道微生物群进行对比分析发现,PD患者存在肠道微生物群失调,具体表现为AlistipesParaprevotellaKlebesiellaSphingomonasAcinetobacterAquabacterium等的相对丰度PD患者高于健康对照组,LactobacillusSediminibacterium的相对丰度PD患者低于健康对照组[59]。一项为期2年的随访研究发现,特定的细菌类群,如罗氏菌属、普雷沃氏菌属和双歧杆菌属在患者和对照组之间都存在差异,而且进展期PD患者比稳定期患者或对照组更经常出现厚壁菌门为主的肠型[60]。多巴胺调节剂是治疗PD的一线药物;然而,左旋多巴(l-dopa)治疗PD的疗效在个体之间存在高度差异[61]。Maini Rekdal等最近发现,左旋多巴治疗PD的疗效取决于其肠道微生物群的组成。左旋多巴脱羧后会变成活跃的多巴胺,但如果左旋多巴在穿过血脑屏障之前被肠道微生物群代谢(粪肠球菌的酪氨酸脱羧酶和迟缓埃格特菌的多巴胺脱羟酶可以将l-多巴代谢为m-酪胺),药物就无效了[62]。了解肠道微生物群与PD发生的相互作用可能为PD的干预和治疗开辟新的途径。

在肠-脑轴研究方面,本团队在促睡眠健康功能微生物的挖掘及其机制方面研究发现,睡眠剥夺造成小鼠脾脏和肾脏出现轻度损伤。随着睡眠剥夺的进行,肠道内益生乳杆菌属呈下降趋势。与空白对照组相比,睡眠剥夺组的抗氧化酶和总还原力水平显著降低,丙二醛水平显著增加,促炎因子显著增加,抗炎因子显著减少。睡眠剥夺导致肠道紧密连接蛋白显著下降。目前筛选到2株具有促睡眠功效的益生菌,与空白组相比,益生菌组增加小鼠的总睡眠时长和慢波睡眠时长,具体作用机制正在探究之中。

2.2 肠-心轴

肠-心轴是指肠道与心血管之间的双向功能关系。流行病学和动物研究表明,肠道微生物群可以调节心脏代谢和循环紊乱,这与动脉粥样硬化性心血管疾病有关[63]。在老年人中,拟杆菌属在冠心病(coronary artery disease, CAD)患者中的丰度低于健康者[64]。在物种水平上,基因测序显示,CAD患者中普通拟杆菌和多雷氏拟杆菌的丰度显著降低。研究表明,用活的普通拟杆菌和多雷氏拟杆菌灌胃可减轻动脉粥样硬化(atherosclerosis, AS)易感小鼠动脉粥样硬化病变的形成,显著改善内毒素血症,降低肠道微生物群脂多糖(lipopolysaccharide, LPS)的产生,有效抑制促炎免疫反应[65]。Tuomisto等发现,梭状芽胞杆菌、肠杆菌和链球菌以年龄依赖的方式在肠道微生物群中增加,并可在同一个体的冠状动脉斑块中检测到,与更严重的AS相关[66]。事实上,能够产生丁酸、三甲胺-N-氧化物(trimethylamine oxide, TMAO)、内毒素(脂多糖)和苯乙酰谷氨酰胺(phenylacetylglutamine, PAGln)的细菌已被发现在AS的肠道-心脏轴中发挥作用。TMAO和PAGln等有害物质被认为是CAD的潜在生物标志物[67]。丁酸可以抑制肠道通透性,因此更少的LPS、TMAO和PAGln分子能够进入全身循环并诱发全身炎症,减少动脉粥样硬化斑块的形成[68]。本团队从“世界长寿乡——中国蕉岭”健康人粪便中筛选出2株具有良好降胆固醇菌株,初步鉴定为屎肠球菌132和副干酪乳杆菌201。这2株益生菌在体内可降低血脂、组织的炎症水平、缓解肝损伤和脂肪细胞肥大,可通过调节脂质代谢相关基因的表达进而调控胆固醇相关脂质代谢,同时调节肠道微生物群,使菌群趋于正常化来改善高胆固醇血症,在老龄化带来的心血管疾病方面具有潜在的降血脂、防治心血管疾病的潜力[69]。这些发现旨在调节肠道微生物群,有助于预防或治疗老年性心血管疾病。

2.3 肠-肝轴

肠-肝轴是指肠道和肝脏之间的功能关系。衰老易导致肝功能障碍和炎症,可促进老年非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)的发展。其中,肠道微生物群失调及相关的肠黏膜屏障功能障碍与NAFLD的发生密切相关[70],其严重程度与肠道微生物群代谢功能(如碳水化合物、脂质和氨基酸代谢)的变化有关[71],同时,短链脂肪酸(short chain fatty acids, SCFAs)的减少可能对NAFLD有害[72],提示存在肠-肝轴损害。鉴于老年NAFLD缺乏有效的药物干预,恢复肠道微生物群以逆转失调似乎是一种潜在的治疗策略。针对上述机制,有许多治疗NAFLD的方法,如服用益生菌、益生元或合生元[73]。Xie等发现益生菌、合生元可以改善转氨酶水平、肝脏脂肪变性和NAFLD活性评分,并降低TNF-α和IL-1、IL-6、IL-8白介素家族等促炎细胞因子[74]。益生元螺旋藻可以调节肠道微生物群,例如增加罗氏菌属和乳杆菌属的比例,激活肠道免疫系统,从而改善老年小鼠的肝脏炎症[75]。本团队目前正在进行洗涤菌群移植治疗代谢相关性脂肪性肝病的临床疗效及机制研究,预期洗涤菌群移植可以调节代谢相关性脂肪性肝病患者肠道微生物群的稳态,通过肠-肝轴从而发挥良好的治疗效果。益生菌、益生元、合生元以及洗涤菌群移植的安全性、有效性和良好的耐受性提示其可能是NAFLD患者,特别是老年人的一种有前途的治疗策略。

2.4 肠-胰腺轴

肠-胰腺轴指的是肠道和胰腺之间的功能关系。胰腺与糖尿病之间存在直接联系,胰腺功能的缺失将导致糖尿病的发生发展。衰老是2型糖尿病(T2DM)的危险因素之一,糖尿病的患病率随着年龄的增长而显著增加。T2DM是老年人代谢综合征、心血管疾病和脑血管疾病的主要危险因素[76]。越来越多的证据表明,肠道微生物群与T2DM相关[77]。在一项涉及345名中国受试者的宏基因组关联研究发现,T2DM患者表现出中度肠道微生物群失调,产丁酸的细菌丰度减少,条件致病菌增加[78]。然而,这项研究没有考虑年龄等混杂因素对肠道微生物群的影响。最近一项招募了尼日利亚T2DM和非T2DM老年人的研究发现,与健康志愿者相比,T2DM老年人的肠道微生物群的整体结构有显著差异。瘤胃球菌属、Collinsela和双歧杆菌在老年T2DM患者中富集,而梭状芽胞杆菌科和消化链球菌科在健康志愿者中富集[79]。一项研究对T2DM小鼠进行了FMT,并验证了T2DM相关的肠道微生物群失调有助于T2DM的发展,改善肠道微生物群的潜在治疗策略可能为T2DM和年龄相关性葡萄糖耐受不良患者提供有益的效果[80]。研究人员发现,膳食菊粉可通过抑制空腹血糖、体重、糖化血红蛋白、血脂、血浆LPS、IL-6、TNF-α和IL-17A,以及调节肠道微生物群,缓解不同阶段的T2DM[81]。此外,肠道微生物群可介导间歇性禁食缓解T2DM和相关认知障碍[82]。本团队在益生乳酸菌对T2DM患者临床指标改善的meta分析发现,益生乳酸菌对T2DM的空腹血糖受患者年龄、国家以及摄入时间长短的影响。胰岛素抵抗受这4个方面的影响,甘油三酯的改善作用受服用益生菌的患者年龄、BMI、国家以及摄入时间长短的影响。舒张压和收缩压的改善作用受益生菌患者年龄的影响。总之,益生乳酸菌对T2DM的改善作用受益生菌摄入方式、患者年龄、BMI、国家,以及摄入时间的长短的影响[83]。这些令人信服的证据支持肠道微生物群参与T2DM的发展,肠道微生物群修饰可能是治疗老年T2DM的一种潜在治疗策略。

2.5 肠-肌轴

肠-肌轴指的是肠道微生物群在维持全身肌肉质量和身体功能方面的作用[84]。肠-肌轴衰老主要表现为肌少症和体质衰弱,肌肉质量和肌肉功能的丧失,增加了跌倒、骨折和残疾等风险。肠-肌轴衰老的机制包括炎症、免疫衰老和氧化应激增加[85]。来自人体研究的证据表明,肠道微生物群的改变与人体虚弱程度的增加相关[86]。Jackson等研究发现,虚弱与肠道微生物群的α多样性呈负相关[87]。衰老的肠道微生物群中粪杆菌属和双歧杆菌属相对丰度的降低与肌力呈负相关,而DolichumEggerthella lenta则与虚弱呈正相关[88]。Nay等发现,在抗生素处理的小鼠中,在体外试验中,跑步耐力下降,抗疲劳指数较低,而肌肉质量/体重比在移植健康菌群以恢复肠道微生物群后增加[89]。这些结果表明,健康的肠道微生物群是宿主最佳骨骼肌功能所必需的。本团队基于宏基因组学的长寿地区不同年龄段肠道微生物群特征分析,构建健康长寿人群肠道微生物群宏基因组学数据库。结果表明:长寿老人肠道微生物群中具有较高丰度的与健康相关的群体AkkermansiaLactobacillusChristensenellaceaeLactobacillus与异生物质的生物降解和代谢、萜类化合物和聚酮化合物的代谢以及超氧化物歧化酶显著相关;Akkermansia与异生物质的生物降解和代谢、聚糖的生物合成和代谢、其他次生代谢物的生物合成、超氧化物歧化酶和过氧化氢酶显著相关。动物和人体研究均表明,肠道微生物群可能积极参与肌少症和体质虚弱的发病过程,可能是一个合理的治疗靶点。

2.6 肠-皮肤轴

肠-皮肤轴是肠道和皮肤之间的一种功能关系,它们对于维持生理稳态都是必不可少的,且具有多种共同特征,例如大量微生物物种的定殖、高神经支配和重血管化,并提供与外部环境的接口。在衰老过程中,肠道微生物群的改变有可能对皮肤功能产生负面影响。许多肠道生态失调相关的胃肠疾病,如炎症性肠病,都会影响皮肤健康[90]。随着年龄的增长,肠道屏障完整性的降低被认为会导致与免疫原性分子渗透相关的衰老功能障碍。这些抗原可以进入血液循环,优先在皮肤中积累,并破坏皮肤稳态,导致慢性皮肤炎症和持续的免疫反应[91]。肠道艰难梭菌产生的代谢产物,如游离酚和对甲酚(肠道微生物群失衡的生物标志),可以进入血液并在皮肤中积累。相比之下,每日摄入短双歧杆菌和低聚半乳糖可降低肠道微生物群产生的血清总酚水平,改善健康成年女性的皮肤健康[92]。此外,SCFAs是肠道微生物群产物,可促进肠道上皮屏障的完整性并发挥抗炎作用。在特异性皮炎患者的粪便样本中观察到SCFAs明显减少[93]。使用益生菌可恢复健康的肠道微生物群,治疗后特异性皮炎患者肠道中分泌SCFAs的细菌比例增加。此外,肠道微生物群影响皮肤稳态的机制虽然尚未被充分研究,但似乎与肠道微生物群对系统免疫的调节作用有关。Schwarz等发现SCFAs特别是丁酸通过增加调节性T细胞(Treg)来控制皮肤免疫反应[94]。SCFAs通过调控皮肤微生物群,从而在影响皮肤免疫反应方面发挥着重要作用[95]。本团队发现发酵乳杆菌GDMCC 61827的发酵上清具有良好的抗紫外线(ultraviolet, UV)诱发的皮肤光损伤能力,采用比较基因组学及靶向代谢组证实该发酵乳杆菌具有良好的烟酰胺合成功能,发酵液中含较高的烟酰胺。发酵乳杆菌GDMCC 61827的发酵上清作用于UV损伤的皮肤细胞后能明显减少细胞内活性氧的产生、高效稳定线粒体膜电位,在体外及体内均展现良好的抗光老化作用[96]。同时,我们的研究表明,益生菌通过抗氧化、减少细胞外基质降解和抑制炎症因子的表达,对皮肤光老化具有修复作用[97]。肠道微生物群与皮肤密切相关,肠道微生物群与益生菌具有明显靶向治疗皮肤衰老的潜力。

2.7 肠-骨轴

肠-骨轴代表肠道和骨骼细胞之间的功能关系。肠道微生物群是影响骨骼发育和退化的关键调节器[98]。肠道微生物群紊乱可促进肠道环境炎症,导致骨髓微环境炎症增加,随后骨量减少[99]。肠-骨轴调节因子,如胰岛素样生长因子1 (insulin-like growth factor 1, IGF-1)[100]和硫化氢(H2S)[101]可以被肠道微生物群调控。一项动物研究报告称,SCFAs被认为是破骨细胞代谢和骨稳态的有效调节因子。在抗生素治疗的小鼠中,补充SCFAs可以恢复血清IGF-1和骨量水平,这表明SCFAs可以调节宿主骨骼[102]。然而,老年人的丁酸和丙酸水平显著降低,这可能解释了与年龄相关的骨丢失。多项研究发现,在小鼠中,副干酪乳杆菌和植物乳杆菌通过抑制骨髓和肠道中因雌激素缺乏而产生的破骨细胞因子来限制骨质流失[103]。TYAGI等发现鼠李糖乳杆菌GG (Lactobacillus rhamnosus GG, LGG)治疗小鼠骨稳态可增加小鼠肠道梭状芽胞杆菌的水平,梭状芽胞杆菌可诱导肠道和循环中丁酸盐的产生。根据实验数据,肠道微生物群通过调节宿主代谢、免疫反应和内分泌因素来调节骨代谢[104]。本团队基于构建的健康长寿人群菌种库与组学数据库基础上,运用体外抗氧化筛选指标筛选具有良好抗氧化功能益生菌植物乳杆菌124 (Lactobacillus plantarum 124, LP124),具有良好的益生特性和安全性。通过LP124对D-半乳糖诱导氧化损伤小鼠修复机制的研究表明:LP124可显著调节氧化损伤小鼠的肠道微生物群组成;具有较强的氨基酸代谢能力、脂质代谢、外源物生物降解与代谢能力和碳水化合物代谢能力;其衍生的小分子L-抗坏血酸可以作为参与抗氧化反应的有效物质。用益生菌、益生元、合生菌或后生元直接或间接修复肠道微生物群可能有助于治疗与衰老相关的骨骼疾病。

3 衰老肠道微生物群的调节

肠道微生物群稳态的维持在健康衰老和长寿中发挥着重要作用,这可以通过饮食干预、FMT和微生态制剂来调节肠道微生物群稳态,从而发挥抗氧化、抗炎和抗免疫衰老的作用延缓衰老(图 3)。

图 3 饮食干预、粪菌移植和微生态制剂调节肠道微生物群稳态发挥抗氧化、抗炎和抗免疫衰老机制 Figure 3 Dietary intervention, fecal microbiota transplantation and microecological preparation modulate gut microbiota homeostasis to exert antioxidant, anti-inflammatory and anti-immune aging mechanisms.

3.1 饮食干预调控肠道微生物群

饮食是最重要的外在因素之一,塑造了肠道微生物群的组成和功能。有证据表明,经常食用富含水果和蔬菜的饮食可以降低与年龄有关疾病的风险。老年人经常会减少膳食纤维中植物多糖的摄入量,这可能会导致肠道微生物群转向其他底物,如蛋白质和氨基酸。一般情况下,微生物对膳食纤维的代谢主要导致SCFAs的形成,从而降低结肠pH值,抑制病原菌的过度生长。然而,氨基酸的发酵除了释放有益的SCFAs外,还会产生一系列潜在的有害化合物,其中氨、酚和氧化三甲胺等可导致肠道疾病,如炎症性肠病[105]。地中海饮食(以大量橄榄油、豆科植物、天然谷物、水果和蔬菜,适量鱼、乳制品、少量肉制品为重要特色)是公认的预防疾病和健康衰老的饮食之一,部分原因是其抗炎和抗氧化特性。有研究报道,地中海饮食和肌肉减少症正相关[106],而地中海饮食的成分被认为是具有神经保护[107];并且可以帮助改善葡萄糖耐量,预防肥胖和肠道炎症[108],并减少虚弱性[109]

此外,热量限制(calorie restriction, CR)是延长寿命和促进健康的有效措施之一,效果取决于年龄[110],CR可能是长寿的生理驱动力[111]。间歇性禁食(intermittent fasting, IF)已经成为一种非常规的方法来减轻体重和改善代谢疾病。IF增加了无菌小鼠小肠长度,导致肠道微生物群含量和组成的明显改变,厚壁菌门/拟杆菌门的比例显著增加[112],逆转了与衰老相关的肠道微生物群变化模式。终身CR小鼠的肠道微生物群以与寿命正相关的有益细菌乳杆菌为主,可抑制病原体粘附到肠壁,防止病原体引起的肠道屏障破坏并减少炎性细胞因子[113]。与衰老相关的肠道微生物群在全身炎症的发病机制中起着关键作用。如从CR小鼠粪便中分离出的一株鼠乳杆菌有助于保护肠道屏障和减弱全身慢性炎症[114]。本团队强调了生物活性肽通过微生物群-肠-脑轴在改善神经退行性疾病中的功能,调节肠道微生物群的生物活性肽可用作控制和减少神经退行性疾病的新型战略分子。肽的生物活性会受到不同生产和修饰过程的显著影响。可以通过调节肠道微生物群来进一步开发功能性食品以改善神经退行性疾病的策略。未来的工作应侧重于生物活性肽的生物利用度和相互作用及其对神经退行性疾病的影响[115]。总之,饮食和CR可能成为一种新颖而简单的方法,通过调节肠道微生物群来减轻与年龄相关的炎症,促进健康,延长人类寿命。

3.2 粪便微生物群移植调控肠道微生物群

粪便微生物群移植(fecal microbiota transplant, FMT)是指将健康人粪便中的功能菌群移植到患者肠道内,重建新的肠道微生物群,实现肠道及肠道外疾病的治疗。与年龄相关的肠道微生物群变化并不总是以饮食方式恢复。FMT可以将肠道微生物群作为一个整体在物种水平上全部转移,以恢复与年龄相关的变化。事实上,FMT后的肠道微生物群组成能恢复到类似于供体的健康状态。一项动物实验表明,FMT可以通过重构早衰小鼠肠道微生物群来延长健康寿命,研究者同时对回肠内容物的代谢组学分析表明,次级胆汁酸的恢复可能是重建健康肠道微生物群有益作用的潜在机制[116]。Chen等将长寿人的肠道微生物群移植到小鼠体内,发现转移的有益细菌,如乳酸杆菌、双歧杆菌,以及产生SCFAs的罗斯氏菌属、粪杆菌属、瘤胃球菌属和粪球菌属,可以降低衰老相关指标,这些结果表明来自长寿人的肠道微生物群具有改善健康老龄化的有益作用[117]。FMT在治疗复发性艰难梭菌感染(Clostridium difficile infection, CDI)方面被证明是非常有效的[118],FMT可以提高老年患者CDI的治愈率和降低复发率[119]。临床实验研究报告,FMT可能是一种很有前途的治疗神经退行性疾病的选择[120],且足以治疗或预防代谢性相关疾病[121]、T2DM[122]和NAFLD[123]等。本团队在良好的FMT平台和技术的基础上,瞄准大数据时代人工智能与肠道微生态噬菌体研究热点,深入探究FMT中粪便噬菌体移植(fecal phage transplantation, FPT)的作用机理,提出FPT重构肠道微生态介导Toll样受体2/9 (Toll-like receptors,TLR 2/9)调控核苷酸结合寡聚化结构域样受体蛋白3 (NOD-like receptor protein 3, NLRP 3)炎症小体抗炎症性衰老的科学假说,结合AI技术,从“世界长寿乡——中国蕉岭”筛选出年轻潜在健康长寿FPT“超级供体”,明确影响FPT发挥作用的供体因素,寻找炎症性衰老诊断标记物,为FPT精准、高效治疗炎症性衰老提供充足的依据。综上所述,FMT及其FPT能够重构肠道微生物群稳态,恢复肠道微生物群正常的抗炎、抗免疫衰老功能,在健康衰老过程中发挥重要作用。

3.3 微生态制剂调控肠道微生物群

微生态制剂,如益生菌、益生元、合生菌和后生元,在预防和恢复肠道微生物群中与年龄相关的失衡方面越来越重要,并赋予抗衰老作用。这些微生态制剂对健康和长寿的作用机制主要包括减缓年龄相关性炎症、免疫衰老、氧化应激和肠道失调,改善肠道黏膜屏障等。

益生菌可通过增加降胆固醇和降低血糖作用来改善老年人的健康[124],改善炎症性疾病[125],以及预防复发感染[126]和结肠癌[127]。丁酸梭菌MIYAIRI 588可以通过调节胰岛素/IGF-1信号通路和Nrf2转录因子水平来延长线虫的寿命[128]。发酵乳杆菌JDFM216通过核激素受体刺激线虫的寿命和免疫反应[129]。此外,经灭活的长双歧杆菌可以通过增强线虫的耐受力,延长线虫的寿命[130]。植物乳杆菌CCFM10可以保护衰老小鼠免受D-半乳糖诱导的氧化损伤和肠道微生物群失调[131]。人源益生菌联合使用可以改善与衰老相关的肠漏和炎症,增强身体功能,并通过调节微生态稳态延长寿命[132]。Smith等观察到,在阿卡波糖处理的小鼠中,肠道微生物群和发酵产物(SCFAs)的变化与寿命延长同时发生[133]。本团队体外筛选到一株具有良好抗氧化功能益生菌植物乳杆菌124[134],发现其可以体内缓解小鼠D-半乳糖诱导的氧化损伤。同时我们筛选到一株戊糖片球菌IM96能显著缓解并降低机体在感染大肠杆菌O157:H7后的炎症水平[135],这些功能菌株具有良好的应用前景。总之,抗炎、抗氧化和抗免疫衰老的作用表明它们可能是健康衰老的调节剂。

4 讨论

肠道微生物群代表了研究健康衰老的新途径,尽管衰老是不可避免的,但维持正常的肠道微生物群是促进健康衰老的一种潜在方式。近年来,肠道微生物群在衰老相关肠道和肠外疾病中的作用和机制研究取得了很大进展。然而,目前尚不清楚肠道微生物群的改变是衰老的原因还是结果。针对这些问题,需要对健康长寿人群进行大规模的纵向研究,并利用多组学技术联合分析,探索肠道微生物群与健康衰老的深层内在机理。这些研究将建立健康的标准参考数据集,可用于破译肠道微生物群与衰老相关疾病之间的关系,并为不健康衰老建立诊断模型。然而,肠道微生物群在整个生命周期中的健康标准仍不明确,迫切需要建立样本库、菌种资源库、多组学数据库以及相应的临床数据库,包括大量参与者的家族遗传背景、生活方式(饮食、活动、睡眠和抗生素使用)和工作环境,并且充分考虑人际关系、社会地位和地域经济等环境因素。

在个性化和精准医疗的背景下,多组学方法因其可以深入了解分子模式并涵盖广泛的特征而受到广泛关注。科学技术的快速进步加速了“组学时代”的到来,从而使研究人员能够收集和整合不同分子水平的数据。识别衰老的生物标志物和抗衰老干预的新目标在衰老生物学和老年病学中至关重要。通过多组学技术获得的多层次信息有助于加深对衰老机制的理解,为衰老和衰老相关疾病的诊断和治疗提供新的机遇。尽管与年龄相关的肠道微生物群变化相当复杂,但对其生理和病理变化及宿主衰老的综合评价可能会开辟新的研究前景。肠道微生物群在人类衰老过程中的作用和机制的新发现将为靶向调控肠道微生物群提供新的治疗途径。在老年医学领域,从现有数据集中发现新的生物标志物和新的生物学年龄测量方法具有重要价值。基于肠道微生态的干预方法来影响人类衰老和长寿的想法很具有吸引力,通过调节肠道微生物群改善肠道和肠外器官轴衰老,识别与衰老相关的特异菌株和代谢物,开发新型抗衰老微生态制剂,这些研究将有助于通过精准调控肠道微生物群达到个性化治疗并促进健康长寿。

References
[1] FANG EF, SCHEIBYE-KNUDSEN M, JAHN HJ, LI J, LING L, GUO HW, ZHU XQ, PREEDY V, LU HM, BOHR VA, CHAN WY, LIU YL, NG TB. A research agenda for aging in China in the 21st century. Ageing Research Reviews, 2015, 24: 197-205. DOI:10.1016/j.arr.2015.08.003
[2] United Nations, World Population Prospects 2019: Highlights[EB/OL]. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf. (2020). 2020-10-20.
[3] CARMONA JJ, MICHAN S. Biology of healthy aging and longevity. Revista De Investigacion Clinica - Clinical and Translational Investigation, 2016, 68(1): 7-16.
[4] HOU YJ, DAN XL, BABBAR M, WEI Y, HASSELBALCH SG, CROTEAU DL, BOHR VA. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 2019, 15(10): 565-581. DOI:10.1038/s41582-019-0244-7
[5] DATO S, ROSE G, CROCCO P, MONTI D, GARAGNANI P, FRANCESCHI C, PASSARINO G. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mechanisms of Ageing and Development, 2017, 165: 147-155. DOI:10.1016/j.mad.2017.03.011
[6] WU L, XIE XQ, ZHANG JM, DING Y, WU QP. Bacterial diversity and community in regional water microbiota between different towns in world's longevity township Jiaoling, China. Diversity, 2021, 13(8): 361. DOI:10.3390/d13080361
[7] VEMURI R, GUNDAMARAJU R, SHASTRI MD, SHUKLA SD, KALPURATH K, BALL M, TRISTRAM S, SHANKAR EM, AHUJA K, ERI R. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Research International, 2018, 2018: 4178607.
[8] DEJONG EN, SURETTE MG, BOWDISH DME. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host & Microbe, 2020, 28(2): 180-189.
[9] CAVAILLON JM, LEGOUT S. Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader. Microbes and Infection, 2016, 18(10): 577-594. DOI:10.1016/j.micinf.2016.05.008
[10] O'HARA AM, SHANAHAN F. The gut flora as a forgotten organ. EMBO Reports, 2006, 7(7): 688-693. DOI:10.1038/sj.embor.7400731
[11] KIM HB, BOREWICZ K, WHITE BA, SINGER RS, SREEVATSAN S, TU ZJ, ISAACSON RE. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Veterinary Microbiology, 2011, 153(1/2): 124-133.
[12] MATEOS I, COMBES S, PASCAL G, CAUQUIL L, BARILLY C, COSSALTER AM, LAFFITTE J, BOTTI S, PINTON P, OSWALD IP. Fumonisin-exposure impairs age-related ecological succession of bacterial species in weaned pig gut microbiota. Toxins, 2018, 10(6): 230. DOI:10.3390/toxins10060230
[13] HAMADY M, WALKER JJ, HARRIS JK, GOLD NJ, KNIGHT R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 2008, 5(3): 235-237. DOI:10.1038/nmeth.1184
[14] VANDENPLAS Y, CARNIELLI VP, KSIAZYK J, LUNA MS, MIGACHEVA N, MOSSELMANS JM, PICAUD JC, POSSNER M, SINGHAL A, WABITSCH M. Factors affecting early-life intestinal microbiota development. Nutrition, 2020, 78: 110812. DOI:10.1016/j.nut.2020.110812
[15] LIU Y, QIN ST, SONG YL, FENG Y, LV N, XUE Y, LIU F, WANG SX, ZHU BL, MA JM, YANG HX. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Frontiers in Microbiology, 2019, 10: 598. DOI:10.3389/fmicb.2019.00598
[16] HESLA HM, STENIUS F, JÄDERLUND L, NELSON R, ENGSTRAND L, ALM J, DICKSVED J. Impact of lifestyle on the gut microbiota of healthy infants and their mothers - the ALADDIN birth cohort. FEMS Microbiology Ecology, 2014, 90(3): 791-801. DOI:10.1111/1574-6941.12434
[17] GIBSON MK, WANG B, AHMADI S, BURNHAM CA D, TARR PI, WARNER BB, DANTAS G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nature Microbiology, 2016, 1: 16024. DOI:10.1038/nmicrobiol.2016.24
[18] FORSGREN M, ISOLAURI E, SALMINEN S, RAUTAVA S. Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life. Acta Paediatrica: Oslo, Norway: 1992, 2017, 106(7): 1103-1109.
[19] ZHOU P, ZHOU YX, LIU B, JIN ZC, ZHUANG XL, DAI WK, YANG ZY, FENG X, ZHOU Q, LIU YH, XU XM, ZHANG L. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere, 2020, 5(1): e00984-e00919.
[20] CONG XM, XU WL, JANTON S, HENDERSON WA, MATSON A, MCGRATH JM, MAAS K, GRAF J. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS One, 2016, 11(4): e0152751. DOI:10.1371/journal.pone.0152751
[21] BARNES MJ, POWRIE F. Immunology. the gut's Clostridium cocktail. Science, 2011, 331(6015): 289-290. DOI:10.1126/science.1201291
[22] BENÍTEZ-PÁEZ A, OLIVARES M, SZAJEWSKA H, PIEŚCIK-LECH M, POLANCO I, CASTILLEJO G, NUÑEZ M, RIBES-KONINCKX C, KORPONAY-SZABÓ IR, KOLETZKO S, MEIJER CR, MEARIN ML, SANZ Y. Breast-milk microbiota linked to celiac disease development in children: a pilot study from the prevent CD cohort. Frontiers in Microbiology, 2020, 11: 1335. DOI:10.3389/fmicb.2020.01335
[23] KU HJ, KIM YT, LEE JH. Microbiome study of initial gut microbiota from newborn infants to children reveals that diet determines its compositional development. Journal of Microbiology and Biotechnology, 2020, 30(7): 1067-1071. DOI:10.4014/jmb.2002.02042
[24] LALLÈS JP, BOSI P, SMIDT H, STOKES CR. Weaning—a challenge to gut physiologists. Livestock Science, 2007, 108(1/2/3): 82-93.
[25] SUBRAMANIAN S, HUQ S, YATSUNENKO T, HAQUE R, MAHFUZ M, ALAM MA, BENEZRA A, DESTEFANO J, MEIER MF, MUEGGE BD, BARRATT MJ, VANARENDONK LG, ZHANG QY, PROVINCE MA, PETRI JR WA, AHMED T, GORDON JI. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 2014, 510(7505): 417-421. DOI:10.1038/nature13421
[26] KOENIG JE, SPOR A, SCALFONE N, FRICKER AD, STOMBAUGH J, KNIGHT R, ANGENENT LT, LEY RE. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(supplement_1): 4578-4585. DOI:10.1073/pnas.1000081107
[27] YANG B, YAN S, CHEN Y, ROSS RP, STANTON C, ZHAO JX, ZHANG H, CHEN W. Diversity of gut microbiota and bifidobacterial community of Chinese subjects of different ages and from different regions. Microorganisms, 2020, 8(8): 1108. DOI:10.3390/microorganisms8081108
[28] LAURSEN MF, ANDERSEN LBB, MICHAELSEN KF, MØLGAARD C, TROLLE E, BAHL MI, LICHT TR. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere, 2016, 1(1): e00069-e00015.
[29] YASSOUR M, VATANEN T, SILJANDER H, HÄMÄLÄINEN AM, HÄRKÖNEN T, RYHÄNEN SJ, FRANZOSA EA, VLAMAKIS H, HUTTENHOWER C, GEVERS D, LANDER ES, KNIP M, GROUP DS, XAVIER RJ. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8(343): 343ra81.
[30] CAPORASO JG, LAUBER CL, COSTELLO EK, BERG-LYONS D, GONZALEZ A, STOMBAUGH J, KNIGHTS D, GAJER P, RAVEL J, FIERER N, GORDON JI, KNIGHT R. Moving pictures of the human microbiome. Genome Biology, 2011, 12(5): R50. DOI:10.1186/gb-2011-12-5-r50
[31] DERRIEN M, ALVAREZ AS, de VOS WM. The gut microbiota in the first decade of life. Trends in Microbiology, 2019, 27(12): 997-1010. DOI:10.1016/j.tim.2019.08.001
[32] HO NT, LI F, LEE-SARWAR KA, TUN HM, BROWN BP, PANNARAJ PS, BENDER JM, AZAD MB, THOMPSON AL, WEISS ST, AZCARATE-PERIL MA, LITONJUA AA, KOZYRSKYJ AL, JASPAN HB, ALDROVANDI GM, KUHN L. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nature Communications, 2018, 9: 4169. DOI:10.1038/s41467-018-06473-x
[33] LAGIER JC, MILLION M, HUGON P, ARMOUGOM F, RAOULT D. Human gut microbiota: repertoire and variations. Frontiers in Cellular and Infection Microbiology, 2012, 2: 136.
[34] COSTEA PI, HILDEBRAND F, ARUMUGAM M, BÄCKHED F, BLASER MJ, BUSHMAN FD, de VOS WM, EHRLICH SD, FRASER CM, HATTORI M, HUTTENHOWER C, JEFFERY IB, KNIGHTS D, LEWIS JD, LEY RE, OCHMAN H, O'TOOLE PW, QUINCE C, RELMAN DA, SHANAHAN F, et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3(1): 8-16.
[35] SOMMER F, ANDERSON JM, BHARTI R, RAES J, ROSENSTIEL P. The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 2017, 15(10): 630-638. DOI:10.1038/nrmicro.2017.58
[36] LAHTINEN SJ, TAMMELA L, KORPELA J, PARHIALA R, AHOKOSKI H, MYKKANEN H, SALMINEN S. Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age, 2009, 31(1): 59-66. DOI:10.1007/s11357-008-9081-0
[37] RONDANELLI M, GIACOSA A, FALIVA MA, PERNA S, ALLIERI F, CASTELLAZZI AM. Review on microbiota and effectiveness of probiotics use in older. World Journal of Clinical Cases, 2015, 3(2): 156-162. DOI:10.12998/wjcc.v3.i2.156
[38] HAN B, SIVARAMAKRISHNAN P, LIN CC J, NEVE IAA, HE JQ, TAY LWR, SOWA JN, SIZOVS A, DU GW, WANG J, HERMAN C, WANG MC. Microbial genetic composition tunes host longevity. Cell, 2017, 169(7): 1249-1262.e13. DOI:10.1016/j.cell.2017.05.036
[39] MARIAT D, FIRMESSE O, LEVENEZ F, GUIMARĂES V, SOKOL H, DORÉ J, CORTHIER G, FURET JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 2009, 9: 123. DOI:10.1186/1471-2180-9-123
[40] RAMPELLI S, SOVERINI M, D'AMICO F, BARONE M, TAVELLA T, MONTI D, CAPRI M, ASTOLFI A, BRIGIDI P, BIAGI E, FRANCESCHI C, TURRONI S, CANDELA M. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems, 2020, 5(2): e00124-e00120.
[41] BIAGI E, FRANCESCHI C, RAMPELLI S, SEVERGNINI M, OSTAN R, TURRONI S, CONSOLANDI C, QUERCIA S, SCURTI M, MONTI D, CAPRI M, BRIGIDI P, CANDELA M. Gut microbiota and extreme longevity. Current Biology, 2016, 26(11): 1480-1485. DOI:10.1016/j.cub.2016.04.016
[42] BIAGI E, NYLUND L, CANDELA M, OSTAN R, BUCCI L, PINI E, NIKKÏLA J, MONTI D, SATOKARI R, FRANCESCHI C, BRIGIDI P, de VOS W. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One, 2010, 5(5): e10667. DOI:10.1371/journal.pone.0010667
[43] LUAN Z, SUN G, HUANG Y, YANG YS, YANG RF, LI CY, WANG TT, TAN D, QI SR, JUN C, WANG C, WANG SF, ZHAO YM, JING YJ. Metagenomics study reveals changes in gut microbiota in centenarians: a cohort study of Hainan centenarians. Frontiers in Microbiology, 2020, 11: 1474. DOI:10.3389/fmicb.2020.01474
[44] ZHAO L, QIAO XW, ZHU J, ZHANG XY, JIANG JL, HAO YL, REN FZ. Correlations of fecal bacterial communities with age and living region for the elderly living in Bama, Guangxi, China. The Journal of Microbiology, 2011, 49(2): 186-192. DOI:10.1007/s12275-011-0405-x
[45] FRANCESCHI C, GARAGNANI P, PARINI P, GIULIANI C, SANTORO A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nature Reviews Endocrinology, 2018, 14(10): 576-590. DOI:10.1038/s41574-018-0059-4
[46] GUIGOZ Y, DORÉ J, SCHIFFRIN EJ. The inflammatory status of old age can be nurtured from the intestinal environment. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11(1): 13-20. DOI:10.1097/MCO.0b013e3282f2bfdf
[47] GARCÍA-PEÑA C, ÁLVAREZ-CISNEROS T, QUIROZ-BAEZ R, FRIEDLAND RP. Microbiota and aging. A review and commentary. Archives of Medical Research, 2017, 48(8): 681-689. DOI:10.1016/j.arcmed.2017.11.005
[48] WU L, XIE XQ, LIANG TT, MA J, YANG LS, YANG J, LI LY, XI Y, LI HX, ZHANG JM, CHEN XF, DING Y, WU QP. Integrated multi-omics for novel aging biomarkers and antiaging targets. Biomolecules, 2021, 12(1): 39. DOI:10.3390/biom12010039
[49] FRANCESCHI C, CAPRI M, MONTI D, GIUNTA S, OLIVIERI F, SEVINI F, PANOURGIA MP, INVIDIA L, CELANI L, SCURTI M, CEVENINI E, CASTELLANI GC, SALVIOLI S. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development, 2007, 128(1): 92-105. DOI:10.1016/j.mad.2006.11.016
[50] KIM S, JAZWINSKI SM. The gut microbiota and healthy aging: a mini-review. Gerontology, 2018, 64(6): 513-520. DOI:10.1159/000490615
[51] RUIZ-RUIZ S, SANCHEZ-CARRILLO S, CIORDIA S, MENA MC, MÉNDEZ-GARCÍA C, ROJO D, BARGIELA R, ZUBELDIA-VARELA E, MARTÍNEZ-MARTÍNEZ M, BARBAS C, FERRER M, MOYA A. Functional microbiome deficits associated with ageing: chronological age threshold. Aging Cell, 2020, 19(1): e13063.
[52] COLLINO S, MONTOLIU I, MARTIN FP J, SCHERER M, MARI D, SALVIOLI S, BUCCI L, OSTAN R, MONTI D, BIAGI E, BRIGIDI P, FRANCESCHI C, REZZI S. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One, 2013, 8(3): e56564. DOI:10.1371/journal.pone.0056564
[53] GAUGLER J, JAMES B, JOHNSON T, REIMER J, SOLIS M, WEUVE J, BUCKLEY RF, HOHMAN TJ. 2022 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 2022, 18(4): 700-789.
[54] SUN J, LIU SZ, LING ZX, WANG FY, LING Y, GONG TY, FANG N, YE SQ, SI J, LIU JM. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. Journal of Agricultural and Food Chemistry, 2019, 67(10): 3006-3017. DOI:10.1021/acs.jafc.8b07313
[55] ZHUANG ZQ, SHEN LL, LI WW, FU X, ZENG F, GUI L, LÜ Y, CAI M, ZHU C, TAN YL, ZHENG P, LI HY, ZHU J, ZHOU HD, BU XL, WANG YJ. Gut microbiota is altered in patients with Alzheimer's disease. Journal of Alzheimer's Disease: JAD, 2018, 63(4): 1337-1346. DOI:10.3233/JAD-180176
[56] CATTANEO A, CATTANE N, GALLUZZI S, PROVASI S, LOPIZZO N, FESTARI C, FERRARI C, GUERRA UP, PAGHERA B, MUSCIO C, BIANCHETTI A, VOLTA GD, TURLA M, COTELLI MS, GENNUSO M, PRELLE A, ZANETTI O, LUSSIGNOLI G, MIRABILE D, BELLANDI D, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 2017, 49: 60-68. DOI:10.1016/j.neurobiolaging.2016.08.019
[57] SAVIGNAC HM, TRAMULLAS M, KIELY B, DINAN TG, CRYAN JF. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural Brain Research, 2015, 287: 59-72. DOI:10.1016/j.bbr.2015.02.044
[58] SUN J, XU JX, LING Y, WANG FY, GONG TY, YANG CW, YE SQ, YE KY, WEI DH, SONG ZQ, CHEN DN, LIU JM. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Translational Psychiatry, 2019, 9: 189. DOI:10.1038/s41398-019-0525-3
[59] QIAN YW, YANG XD, XU SQ, WU CY, SONG YY, QIN N, CHEN SD, XIAO Q. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease. Brain, Behavior, and Immunity, 2018, 70: 194-202. DOI:10.1016/j.bbi.2018.02.016
[60] AHO VTE, PEREIRA PAB, VOUTILAINEN S, PAULIN L, PEKKONEN E, AUVINEN P, SCHEPERJANS F. Gut microbiota in Parkinson's disease: temporal stability and relations to disease progression. EBioMedicine, 2019, 44: 691-707. DOI:10.1016/j.ebiom.2019.05.064
[61] JENNER P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nature Reviews Neuroscience, 2008, 9(9): 665-677. DOI:10.1038/nrn2471
[62] MAINI REKDAL V, BESS EN, BISANZ JE, TURNBAUGH PJ, BALSKUS EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science, 2019, 364(6445): eaau6323. DOI:10.1126/science.aau6323
[63] TOYA T, CORBAN MT, MARRIETTA E, HORWATH IE, LERMAN LO, MURRAY JA, LERMAN A. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One, 2020, 15(1): e0227147. DOI:10.1371/journal.pone.0227147
[64] EMOTO T, YAMASHITA T, SASAKI N, HIROTA Y, HAYASHI T, SO A, KASAHARA K, YODOI K, MATSUMOTO T, MIZOGUCHI T, OGAWA W, HIRATA KI. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. Journal of Atherosclerosis and Thrombosis, 2016, 23(8): 908-921. DOI:10.5551/jat.32672
[65] YOSHIDA N, EMOTO T, YAMASHITA T, WATANABE H, HAYASHI T, TABATA T, HOSHI N, HATANO N, OZAWA G, SASAKI N, MIZOGUCHI T, AMIN HZ, HIROTA Y, OGAWA W, YAMADA T, HIRATA KI. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018, 138(22): 2486-2498. DOI:10.1161/CIRCULATIONAHA.118.033714
[66] TUOMISTO S, HUHTALA H, MARTISKAINEN M, GOEBELER S, LEHTIMÄKI T, KARHUNEN PJ. Age-dependent association of gut bacteria with coronary atherosclerosis: tampere sudden death study. PLoS One, 2019, 14(8): e0221345. DOI:10.1371/journal.pone.0221345
[67] CHEN WJ, ZHANG S, WU JF, YE T, WANG S, WANG P, XING DM. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clinica Chimica Acta, 2020, 507: 236-241. DOI:10.1016/j.cca.2020.04.037
[68] BASTIN M, ANDREELLI F. The gut microbiota and diabetic cardiomyopathy in humans. Diabetes & Metabolism, 2020, 46(3): 197-202. DOI:10.3969/j.issn.1006-6187.2020.03.009
[69] YANG LS, XIE XQ, LI Y, WU L, FAN CC, LIANG TT, XI Y, YANG SH, LI HX, ZHANG JM, DING Y, XUE L, CHEN MT, WANG J, WU QP. Evaluation of the cholesterol-lowering mechanism of Enterococcus faecium strain 132 and Lactobacillus paracasei strain 201 in hypercholesterolemia rats. Nutrients, 2021, 13(6): 1982. DOI:10.3390/nu13061982
[70] CELAJ S, GLEESON MW, DENG J, O'TOOLE GA, HAMPTON TH, TOFT MF, MORRISON HG, SOGIN ML, PUTRA J, SURIAWINATA AA, GORHAM JD. The microbiota regulates susceptibility to Fas-mediated acute hepatic injury. Laboratory Investigation, 2014, 94(9): 938-949. DOI:10.1038/labinvest.2014.93
[71] BOURSIER J, MUELLER O, BARRET M, MACHADO M, FIZANNE L, ARAUJO-PEREZ F, GUY CD, SEED PC, RAWLS JF, DAVID LA, HUNAULT G, OBERTI F, CALÈS P, DIEHL AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology: Baltimore, Md, 2016, 63(3): 764-775. DOI:10.1002/hep.28356
[72] PUERTOLLANO E, KOLIDA S, YAQOOB P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17(2): 139-144. DOI:10.1097/MCO.0000000000000025
[73] OLVEIRA G, GONZÁLEZ-MOLERO I. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinología y Nutrición: English Edition, 2016, 63(9): 482-494. DOI:10.1016/j.endonu.2016.07.006
[74] XIE CC, HALEGOUA-DEMARZIO D. Role of probiotics in non-alcoholic fatty liver disease: does gut microbiota matter?. Nutrients, 2019, 11(11): 2837. DOI:10.3390/nu11112837
[75] NEYRINCK AM, TAMINIAU B, WALGRAVE H, DAUBE G, CANI PD, BINDELS LB, DELZENNE NM. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota?. Nutrients, 2017, 9(6): 633. DOI:10.3390/nu9060633
[76] FERRI CP, PRINCE M, BRAYNE C, BRODATY H, FRATIGLIONI L, GANGULI M, HALL K, HASEGAWA K, HENDRIE H, HUANG YQ, JORM A, MATHERS C, MENEZES PR, RIMMER E, SCAZUFCA M,. Global prevalence of dementia: a Delphi consensus study. The Lancet, 2005, 366(9503): 2112-2117. DOI:10.1016/S0140-6736(05)67889-0
[77] WU H, ESTEVE E, TREMAROLI V, KHAN MT, CAESAR R, MANNERÅS-HOLM L, STÅHLMAN M, OLSSON LM, SERINO M, PLANAS-FÈLIX M, XIFRA G, MERCADER JM, TORRENTS D, BURCELIN R, RICART W, PERKINS R, FERNÀNDEZ-REAL JM, BÄCKHED F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23(7): 850-858. DOI:10.1038/nm.4345
[78] QIN JJ, LI YR, CAI ZM, LI SH, ZHU JF, ZHANG F, LIANG SS, ZHANG WW, GUAN YL, SHEN DQ, PENG YQ, ZHANG DY, JIE ZY, WU WX, QIN YW, XUE WB, LI JH, HAN LC, LU DH, WU PX, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418): 55-60. DOI:10.1038/nature11450
[79] AFOLAYAN AO, ADEBUSOYE LA, CADMUS EO, AYENI FA. Insights into the gut microbiota of Nigerian elderly with type 2 diabetes and non-diabetic elderly persons. Heliyon, 2020, 6(5): e03971. DOI:10.1016/j.heliyon.2020.e03971
[80] YU F, HAN W, ZHAN GF, LI S, JIANG XH, WANG L, XIANG SK, ZHU B, YANG L, LUO AL, HUA F, YANG C. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging, 2019, 11(22): 10454-10467. DOI:10.18632/aging.102469
[81] LI K, ZHANG L, XUE J, YANG XL, DONG XY, SHA LP, LEI H, ZHANG XX, ZHU LL, WANG Z, LI XR, WANG H, LIU P, DONG YP, HE LJ. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food & Function, 2019, 10(4): 1915-1927.
[82] LIU ZG, DAI XS, ZHANG HB, SHI RJ, HUI Y, JIN X, ZHANG WT, WANG LF, WANG QX, WANG DN, WANG J, TAN XT, REN B, LIU XN, ZHAO T, WANG JM, PAN JR, YUAN T, CHU CQ, LAN L, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature Communications, 2020, 11: 855. DOI:10.1038/s41467-020-14676-4
[83] LIANG TT, WU L, XI Y, LI Y, XIE XQ, FAN CC, YANG LS, YANG SH, CHEN XF, ZHANG JM, WU QP. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: an update of meta-analysis. Critical Reviews in Food Science and Nutrition, 2021, 61(10): 1670-1688. DOI:10.1080/10408398.2020.1764488
[84] TICINESI A, NOUVENNE A, CERUNDOLO N, CATANIA P, PRATI B, TANA C, MESCHI T. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients, 2019, 11(7): 1633. DOI:10.3390/nu11071633
[85] WILSON D, JACKSON T, SAPEY E, LORD JM. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Research Reviews, 2017, 36: 1-10. DOI:10.1016/j.arr.2017.01.006
[86] CLAESSON MJ, JEFFERY IB, CONDE S, POWER SE, O'CONNOR EM, CUSACK S, HARRIS HMB, COAKLEY M, LAKSHMINARAYANAN B, O'SULLIVAN O, FITZGERALD GF, DEANE J, O'CONNOR M, HARNEDY N, O'CONNOR K, O'MAHONY D, van SINDEREN D, WALLACE M, BRENNAN L, STANTON C, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488(7410): 178-184. DOI:10.1038/nature11319
[87] JACKSON MA, JEFFERY IB, BEAUMONT M, BELL JT, CLARK AG, LEY RE, O'TOOLE PW, SPECTOR TD, STEVES CJ. Signatures of early frailty in the gut microbiota. Genome Medicine, 2016, 8(1): 8. DOI:10.1186/s13073-016-0262-7
[88] van TONGEREN SP, SLAETS JPJ, HARMSEN HJM, WELLING GW. Fecal microbiota composition and frailty. Applied and Environmental Microbiology, 2005, 71(10): 6438-6442. DOI:10.1128/AEM.71.10.6438-6442.2005
[89] NAY K, JOLLET M, GOUSTARD B, BAATI N, VERNUS B, PONTONES M, LEFEUVRE-ORFILA L, BENDAVID C, RUÉ O, MARIADASSOU M, BONNIEU A, OLLENDORFF V, LEPAGE P, DERBRÉ F, KOECHLIN-RAMONATXO C. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. American Journal of Physiology Endocrinology and Metabolism, 2019, 317(1): E158-E171. DOI:10.1152/ajpendo.00521.2018
[90] WU XR, MUKEWAR S, KIRAN RP, REMZI FH, HAMMEL J, SHEN B. Risk factors for peristomal pyoderma gangrenosum complicating inflammatory bowel disease. Journal of Crohn's and Colitis, 2013, 7(5): e171-e177. DOI:10.1016/j.crohns.2012.08.001
[91] O'NEILL CA, MONTELEONE G, MCLAUGHLIN JT, PAUS R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2016, 38(11): 1167-1176. DOI:10.1002/bies.201600008
[92] MIYAZAKI K, MASUOKA N, KANO M, IIZUKA R. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Beneficial Microbes, 2014, 5(2): 121-128. DOI:10.3920/BM2012.0066
[93] REDDEL S, DEL CHIERICO F, QUAGLIARIELLO A, GIANCRISTOFORO S, VERNOCCHI P, RUSSO A, FIOCCHI A, ROSSI P, PUTIGNANI L, EL HACHEM M. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Scientific Reports, 2019, 9: 4996. DOI:10.1038/s41598-019-41149-6
[94] SCHWARZ A, BRUHS A, SCHWARZ T. The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. Journal of Investigative Dermatology, 2017, 137(4): 855-864. DOI:10.1016/j.jid.2016.11.014
[95] SALEM I, RAMSER A, ISHAM N, GHANNOUM MA. The gut microbiome as a major regulator of the gut-skin axis. Frontiers in Microbiology, 2018, 9: 1459. DOI:10.3389/fmicb.2018.01459
[96] WU QP, CHEN HZ, LI Y, XIE XQ, ZHANG JM, YANG N, CHEN HY, DAI JS, CHEN L, LIU ZJ. Lactobacillus fermentum capable of efficiently synthesizing nicotinamide and resisting light aging and application of Lactobacillus fermentum: CN113832050A[P]. 2021-12-24 (in Chinese).
吴清平, 陈慧贞, 李滢, 谢新强, 张菊梅, 杨宁, 陈惠元, 代京莎, 陈玲, 刘振杰. 一株高效合成烟酰胺、抗光老化的发酵乳杆菌及其应用: CN113832050A[P]. 2021-12-24.
[97] CHEN HZ, LI Y, XIE XQ, ZHANG JM, WU QP. Research progress on the mechanism of the repair of skin photoaging by probiotics. Acta Microbiologica Sinica, 2022, 62(3): 882-894. (in Chinese)
陈慧贞, 李滢, 谢新强, 张菊梅, 吴清平. 益生菌对皮肤光老化的修复作用及其机制研究进展. 微生物学报, 2022, 62(3): 882-894. DOI:10.13343/j.cnki.wsxb.20210744
[98] ZAISS MM, JONES RM, SCHETT G, PACIFICI R. The gut-bone axis: How bacterial metabolites bridge the distance. The Journal of Clinical Investigation, 2019, 129(8): 3018-3028. DOI:10.1172/JCI128521
[99] KE K, ARRA M, ABU-AMER Y. Mechanisms underlying bone loss associated with gut inflammation. International Journal of Molecular Sciences, 2019, 20(24): 6323. DOI:10.3390/ijms20246323
[100] NOVINCE CM, WHITTOW CR, AARTUN JD, HATHAWAY JD, POULIDES N, CHAVEZ MB, STEINKAMP HM, KIRKWOOD KA, HUANG E, WESTWATER C, KIRKWOOD KL. Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Scientific Reports, 2017, 7: 5747. DOI:10.1038/s41598-017-06126-x
[101] LINDEN DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxidants & Redox Signaling, 2014, 20(5): 818-830.
[102] YAN J, HERZOG JW, TSANG K, BRENNAN CA, BOWER MA, GARRETT WS, SARTOR BR, ALIPRANTIS AO, CHARLES JF. Gut microbiota induce IGF-1 and promote bone formation and growth. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7554-E7563.
[103] LI JY, CHASSAING B, TYAGI AM, VACCARO C, LUO T, ADAMS J, DARBY TM, WEITZMANN MN, MULLE JG, GEWIRTZ AT, JONES RM, PACIFICI R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. The Journal of Clinical Investigation, 2016, 126(6): 2049-2063. DOI:10.1172/JCI86062
[104] TYAGI AM, YU MC, DARBY TM, VACCARO C, LI JY, OWENS JA, HSU E, ADAMS J, WEITZMANN MN, JONES RM, PACIFICI R. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity, 2018, 49(6): 1116-1131.e7. DOI:10.1016/j.immuni.2018.10.013
[105] WINDEY K, de PRETER V, VERBEKE K. Relevance of protein fermentation to gut health. Molecular Nutrition & Food Research, 2012, 56(1): 184-196.
[106] GRANIC A, SAYER AA, ROBINSON SM. Dietary patterns, skeletal muscle health, and sarcopenia in older adults. Nutrients, 2019, 11(4): 745. DOI:10.3390/nu11040745
[107] SHANNON OM, STEPHAN BCM, GRANIC A, LENTJES M, HAYAT S, MULLIGAN A, BRAYNE C, KHAW KT, BUNDY R, ALDRED S, HORNBERGER M, PADDICK SM, MUNIZ-TERERRA G, MINIHANE AM, MATHERS JC, SIERVO M. Mediterranean diet adherence and cognitive function in older UK adults: The european prospective investigation into cancer and nutrition-Norfolk (EPIC-Norfolk) Study. The American Journal of Clinical Nutrition, 2019, 110(4): 938-948. DOI:10.1093/ajcn/nqz114
[108] SERRELI G, DEIANA M. Extra virgin olive oil polyphenols: modulation of cellular pathways related to oxidant species and inflammation in aging. Cells, 2020, 9(2): 478. DOI:10.3390/cells9020478
[109] GHOSH TS, RAMPELLI S, JEFFERY IB, SANTORO A, NETO M, CAPRI M, GIAMPIERI E, JENNINGS A, CANDELA M, TURRONI S, ZOETENDAL EG, HERMES GDA, ELODIE C, MEUNIER N, BRUGERE CM, PUJOS-GUILLOT E, BERENDSEN AM, de GROOT LCPGM, FESKINS EJM, KALUZA J, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69(7): 1218-1228. DOI:10.1136/gutjnl-2019-319654
[110] CHEN CN, LIAO YH, TSAI SC, THOMPSON LV. Age-dependent effects of caloric restriction on mTOR and ubiquitin-proteasome pathways in skeletal muscles. GeroScience, 2019, 41(6): 871-880. DOI:10.1007/s11357-019-00109-8
[111] WILLCOX BJ, WILLCOX DC, TODORIKI H, FUJIYOSHI A, YANO K, HE QM, CURB JD, SUZUKI M. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span. Annals of the New York Academy of Sciences, 2007, 1114: 434-455. DOI:10.1196/annals.1396.037
[112] LI GL, XIE C, LU SY, NICHOLS RG, TIAN Y, LI LC, PATEL D, MA YY, BROCKER CN, YAN TT, KRAUSZ KW, XIANG R, GAVRILOVA O, PATTERSON AD, GONZALEZ FJ. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metabolism, 2017, 26(4): 672-685.e4. DOI:10.1016/j.cmet.2017.08.019
[113] ZHANG CH, LI SF, YANG L, HUANG P, LI WJ, WANG SY, ZHAO GP, ZHANG MH, PANG XY, YAN Z, LIU Y, ZHAO LP. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature Communications, 2013, 4: 2163. DOI:10.1038/ncomms3163
[114] PAN FW, ZHANG LY, LI M, HU YX, ZENG BH, YUAN HJ, ZHAO LP, ZHANG CH. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome, 2018, 6(1): 54. DOI:10.1186/s40168-018-0440-5
[115] WU SJ, BEKHIT AED A, WU QP, CHEN MF, LIAO XY, WANG J, DING Y. Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends in Food Science & Technology, 2021, 108: 164-176.
[116] BÁRCENA C, VALDÉS-MAS R, MAYORAL P, GARABAYA C, DURAND S, RODRÍGUEZ F, FERNÁNDEZ-GARCÍA MT, SALAZAR N, NOGACKA AM, GARATACHEA N, BOSSUT N, APRAHAMIAN F, LUCIA A, KROEMER G, FREIJE JMP, QUIRÓS PM, LÓPEZ-OTÍN C. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine, 2019, 25(8): 1234-1242. DOI:10.1038/s41591-019-0504-5
[117] CHEN YF, ZHANG SY, ZENG B, ZHAO JC, YANG MY, ZHANG MW, LI Y, NI QY, WU D, LI Y. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging, 2020, 12(6): 4778-4793. DOI:10.18632/aging.102872
[118] MULLISH BH, QURAISHI MN, SEGAL JP, MCCUNE VL, BAXTER M, MARSDEN GL, MOORE D, COLVILLE A, BHALA N, IQBAL TH, SETTLE C, KONTKOWSKI G, HART AL, HAWKEY PM, WILLIAMS HR, GOLDENBERG SD. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. The Journal of Hospital Infection, 2018, 10(Suppl 1): S1-S31.
[119] LUO YY, TIXIER EN, GRINSPAN AM. Fecal microbiota transplantation for Clostridioides difficile in high-risk older adults is associated with early recurrence. Digestive Diseases and Sciences, 2020, 65(12): 3647-3651. DOI:10.1007/s10620-020-06147-z
[120] VENDRIK KEW, OOIJEVAAR RE, JONG PD, LAMAN JD, van OOSTEN BW, VAN HILTEN JJ, DUCARMON QR, KELLER JJ, KUIJPER EJ, CONTARINO MF. Fecal microbiota transplantation in neurological disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10: 98. DOI:10.3389/fcimb.2020.00098
[121] YU EW, GAO L, STASTKA P, CHENEY MC, MAHABAMUNUGE J, TORRES SOTO M, FORD CB, BRYANT JA, HENN MR, HOHMANN EL. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Medicine, 2020, 17(3): e1003051. DOI:10.1371/journal.pmed.1003051
[122] KOOTTE RS, LEVIN E, SALOJÄRVI J, SMITS LP, HARTSTRA AV, UDAYAPPAN SD, HERMES G, BOUTER KE, KOOPEN AM, HOLST JJ, KNOP FK, BLAAK EE, ZHAO J, SMIDT H, HARMS AC, HANKEMEIJER T, BERGMAN JJGHM, ROMIJN HA, SCHAAP FG, OLDE DAMINK SWM, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism, 2017, 26(4): 611-619.e6. DOI:10.1016/j.cmet.2017.09.008
[123] CRAVEN L, RAHMAN A, NAIR PARVATHY S, BEATON M, SILVERMAN J, QUMOSANI K, HRAMIAK I, HEGELE R, JOY T, MEDDINGS J, URQUHART B, HARVIE R, MCKENZIE C, SUMMERS K, REID G, BURTON JP, SILVERMAN M. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. The American Journal of Gastroenterology, 2020, 115(7): 1055-1065. DOI:10.14309/ajg.0000000000000661
[124] FABERSANI E, RUSSO M, MARQUEZ A, ABEIJÓN-MUKDSI C, MEDINA R, GAUFFIN-CANO P. Modulation of intestinal microbiota and immunometabolic parameters by caloric restriction and lactic acid bacteria. Food Research International, 2019, 124: 188-199. DOI:10.1016/j.foodres.2018.06.014
[125] SHARMA R, KAPILA R, DASS G, KAPILA S. Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. AGE, 2014, 36(4): 9686. DOI:10.1007/s11357-014-9686-4
[126] GUILLEMARD E, TONDU F, LACOIN F, SCHREZENMEIR J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. The British Journal of Nutrition, 2010, 103(1): 58-68. DOI:10.1017/S0007114509991395
[127] SHARMA M, SHUKLA G. Administration of metabiotics extracted from probiotic Lactobacillus rhamnosus MD 14 inhibit experimental colorectal carcinogenesis by targeting Wnt/β-catenin pathway. Frontiers in Oncology, 2020, 10: 746. DOI:10.3389/fonc.2020.00746
[128] KATO M, HAMAZAKI Y, SUN SM, NISHIKAWA Y, KAGE-NAKADAI E. Clostridium butyricum MIYAIRI 588 increases the lifespan and multiple-stress resistance of Caenorhabditis elegans. Nutrients, 2018, 10(12): 1921. DOI:10.3390/nu10121921
[129] PARK MR, RYU S, MABURUTSE BE, OH NS, KIM SH, OH S, JEONG SY, JEONG DY, OH S, KIM Y. Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor. Scientific Reports, 2018, 8: 7441. DOI:10.1038/s41598-018-25333-8
[130] SUGAWARA T, SAKAMOTO K. Killed Bifidobacterium longum enhanced stress tolerance and prolonged life span of Caenorhabditis elegans via DAF-16. The British Journal of Nutrition, 2018, 120(8): 872-880. DOI:10.1017/S0007114518001563
[131] ZHAO JC, TIAN FW, YAN S, ZHAI QX, ZHANG H, CHEN W. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in D-galactose-induced aging mice. Food & Function, 2018, 9(2): 917-924.
[132] AHMADI S, WANG SH, NAGPAL R, WANG B, JAIN S, RAZAZAN A, MISHRA SP, ZHU XW, WANG Z, KAVANAGH K, YADAV H. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight, 2020, 5(9): e132055. DOI:10.1172/jci.insight.132055
[133] SMITH BJ, MILLER RA, ERICSSON AC, HARRISON DC, STRONG R, SCHMIDT TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiology, 2019, 19(1): 1-16. DOI:10.1186/s12866-018-1372-8
[134] WU QP, WU L, LI Y, LIANG TT, XIE XQ, ZHANG JM, DING Y, WANG J, CHEN MT, XUE L, YE QH. Lactobacillus and application thereof: CN112300962A[P]. 2021-02-02 (in Chinese).
吴清平, 吴磊, 李滢, 梁婷婷, 谢新强, 张菊梅, 丁郁, 王涓, 陈谋通, 薛亮, 叶清华. 一种乳酸菌及其应用: CN112300962A[P]. 2021-02-02.
[135] WU QP, LI HX, LI Y, XIE XQ, CHEN HY, ZHANG JM, DING Y, WANG J, CHEN MT, XUE L, ZHANG SH, YANG XJ, WEI XH, ZHANG YX. Pediococcus pentosaceus antagonistic to Escherichia coli O157: H7 and application thereof: CN113528381A[P]. 2022-09-30 (in Chinese).
吴清平, 李海新, 李滢, 谢新强, 陈惠元, 张菊梅, 丁郁, 王涓, 陈谋通, 薛亮, 张淑红, 杨小鹃, 韦献虎, 张友雄. 一种拮抗大肠杆菌O157: H7的戊糖片球菌及其应用: CN113528381A[P]. 2022-09-30.
肠道微生物群在人类健康衰老中的作用机制研究进展
蔡淑珍 , 吴磊 , 谢新强 , 陈惠元 , 吴清平