
中国科学院微生物研究所,中国微生物学会
文章信息
- 卢法满, 洪义国, 孙巍, 韦明肯, 吴佳鹏. 2022
- LU Faman, HONG Yiguo, SUN Wei, WEI Mingken, WU Jiapeng.
- 红树林生态系统微生物驱动的氮素循环过程研究进展
- Microbially-driven nitrogen cycle in mangrove ecosystems
- 微生物学报, 62(12): 4577-4591
- Acta Microbiologica Sinica, 62(12): 4577-4591
-
文章历史
- 收稿日期:2022-05-05
- 修回日期:2022-07-10
- 网络出版日期:2022-09-14
2. 广州大学大湾区环境研究院, 珠三角水质安全与保护教育部重点实验室, 广东 广州 510006
2. Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, Guangdong, China
红树林生态系统是微生物多样性和生产力较高的沿海生态系统之一,占世界热带和亚热带地区海岸线的60%–70%[1],在全球范围内占地超过1.64×105 km2[2]。尽管与其他热带森林相比,红树林的物种丰富度相对较低,但其结构较复杂、功能多样性显著[3]。红树林生态系统生态学功能和价值主要包括:抵御飓风和风暴潮[4];过滤陆地径流和内陆带出的有机物和污染物,降解污染物和净化水体[5];提供海洋动物及鸟类的栖息环境[5];支持沿海渔业、增加陆地面积、缓解环境污染和增加生物多样性等生态学功能[6]。
氮素是红树林生态系统中必需的生长元素,但含量过多或过少都不利于红树林生态系统发展,例如外源氮素过量造成富营养化[7]。微生物活动负责红树林生态系统内主要养分的转化,红树林微生物复杂的相互作用维持了不同生物地球化学过程的稳定和生态平衡[8–9]。红树林生态系统中微生物源自陆地土壤、海洋和淡水,其中细菌和真菌占比较高[10]。红树林中微生物驱动的主要氮循环过程如图 1所示,包括固氮、氮素矿化、反硝化、硝化、厌氧氨氧化和异化硝酸盐还原为氨等过程,这些氮素循环过程对红树林的生产力维持、生态保护和恢复至关重要[6, 12]。
![]() |
图 1 红树林微生物驱动的主要氮循环流程图[6, 11] Figure 1 Flow chart of main nitrogen cycle driven by mangrove microorganisms[6, 11]. SOM:土壤有机质;BNF:固氮作用;DNRA:异化硝酸盐还原成铵反应;comammox:完全硝化过程;AOB:氨氧化细菌;AOA:氨氧化古菌;NOB:亚硝酸盐氧化细菌 SOM: soil organic matter; BNF: biological nitrogen fixation; DNRA: dissimilatory nitrate reduction to ammonium; comammox: complete ammonia oxidation; AOB: ammonia oxidizing bacteria; AOA: ammonia oxidizing archaea; NOB: nitrite oxidizing bacteria. |
红树林生态系统日益受到污染和破坏,例如人为对红树林树木的砍伐、生活或工业污水的排放等。遵循绿色生态、可持续发展观念,红树林微生物驱动的氮循环过程的研究对认识红树林湿地环境变化、生态过程、营养元素循环和相互作用过程有重要的意义,可为红树林的生态系统的保护和可持续发展提供指导基础。基于红树林生态系统对滨海湿地乃至全球环境的重要性,本文论述了红树林生态系统的特征以及微生物驱动的氮循环主要过程与影响因素。
1 红树林生态特征及其土壤特点红树林的生长和繁殖都在陆地和海洋的动态界面上,为应对自然环境对它的损害,形成的主要生态特征如下:(1) 地下养分丰度,能及时补充养分损失;(2) 微生物分解迅速;(3) 较为复杂且高效的水分和养分利用效率,允许内部资源循环利用;(4) 红树林生长结构简单,受到一定干扰后可以快速恢复;(5) 有一定的稳定性以帮助抑制红树林生态系统稳态变化的负反馈和正反馈;(6) 大量的红树林凋落物,其退化和再矿化导致红树林氮浓度较高[13–15]。
由于红树林所处的独特地理位置,红树林的土壤也因此具有不同于海陆土壤性质,其特征有:(1) 土壤有机质和氮元素含量较高[16];(2) 成土时间短,在各方面还保留母质的特征[17];(3) 土壤盐渍化和沼泽化,土壤氧化还原电位低,还原物质含量高[18];(4) 土壤质地均匀,土壤粘粒含量较高[17];(5) 微生物生理生化多样性[17];(6) 土壤矿物质种类多,且土壤颗粒主要是片状聚合体,元素种类较多,含丰富的重金属元素[19];(7) 土壤含水量相对较高,且含水量随着土层深度的增加呈逐渐升高的趋势[20]等。红树林系统的生态特征为微生物生长繁殖提供了有利条件,促进了微生物驱动的氮循环过程有条不紊地进行[21]。
红树林土壤理化特征会直接或间接影响微生物的丰度、活性及繁殖生存中的各个方面,从而影响红树林氮循环进程[22]。如红树林土壤含水量也可能通过改变土壤盐度、影响氧化还原环境和pH等,间接影响红树林氮循环相关微生物活性,从而改变氮素在红树林湿地中的转化和迁移等[23]。
2 红树林湿地微生物驱动的氮素循环主要过程 2.1 固氮过程生物固氮(biological nitrogen fixation,BNF)是氮素进入红树林生态系统的主要途径之一[24],由含有固氮酶复合物的微生物(固氮菌)将大气中的N (N2)还原为氨(NH3)过程,其支持红树林生态系统40%–60%的氮素需求[10]。红树林生态系统是一个氮素限制的环境[25],没有固氮菌的作用,红树林将无法维持正常氮循环生态学功能。此外,红树林还会存在人为过量的氮素输入,固氮可能是红树林在高氮负荷状态下的主要氮循环途径。如Inoue等在日本伊罗莫特(Iriomote)岛北部西田(Nishida)河流域内的红树林研究发现,柱花草(Rhizophora stylosa)红树林重氮营养物的积累会增加红树林根系周围的生物固氮量,当红树林土壤自生含氮量少时,这种机制就显得特别重要[26]。此外Shiau等发现红树林土壤中的固氮酶活性可能依赖于重氮营养物的活性,而不是微生物的繁殖量[27]。因此,固氮作用对红树林生态系统生态功能保护、维持及其物质循环起重要作用。
固氮菌存在于红树林中的沉积物、微生物垫(厘米级厚度的微生物多层结构)、落叶和树干上的蓝藻结壳等[28],此外,红树林中的固氮菌还存在螃蟹壳上[29–30]。Shiau等在中国台北淡水河口红树林发现土壤中硫酸盐还原菌(sulfate- reducing bacteria,SRB)的固氮贡献占N2固定的51%,SRB可能是红树林土壤中N2固定菌的主要类群[27]。随后,Shiau等在中国台北红树林中发现SRB在相对丰度占比为20%–50%,且具有最高潜在固氮酶活性,进一步证实了SRB是红树林生态系统中氮固定的主要微生物类群[31]。
近12年来越来越多新型红树林固氮菌属被发现,如表 1所示。Huang等在中国泉州湾洛阳红树林沉积物中发现一株新固氮菌GM1-28,为兼性厌氧型菌种,归属于Maribellus sediminis[36]。Hu等在中国泉州洛阳河口红树林沉积物中发现一株新型的兼性厌氧型固氮菌GM2-18T,隶属于Draconibacterium[35]。吴婕在漳州紫泥红树林表层沉积物中发现菌株ZWAL4003T具有潜在的固氮能力和反硝化能力,属革兰氏阴性菌,归属于Vibrio ziniensis[37]。这些发现证明红树林生态系统固氮作用由多种微生物共同参与,并且可能有更多具有固氮功能的微生物未被发现。
Species | Names | Positions | Time | References |
Mangrovibacter plantissponsor | MSSRF40T | Pichavaram mangrove forest in India | 2010 | [32] |
Marinobacterium mangrovicola | Gal22T | Rhizophora mangle mangrove | 2014 | [33] |
Mangrovibacterium diazotrophicum | SCSIO N0430T | Bailu Park mangrove, Sanya, on the south coast of China | 2014 | [34] |
Draconibacterium mangrovi | GM2-18T | Luoyang mangrove, Quanzhou Bay, China | 2020 | [35] |
Maribellus sediminis | GM1-28 | Luoyang mangrove, Quanzhou, China | 2020 | [36] |
Vibrio ziniensis | ZWAL4003T | Purple Mud mangrove in Zhangzhou, China | 2021 | [37] |
2.2 氮素矿化过程
红树林湿地土壤的氮素矿化(nitrogen mineralization)是微生物诱导的过程,它能将有机氮转化为无机氮(NH4+-N)[38]。红树林生态系统凋落物等会导致红树林沉积物有机氮浓度偏高,而微生物的氮素矿化作用能使有机氮转化为无机氮,这可能是红树林水域中溶解无机氮(dissolved inorganic nitrogen,DIN)的主要来源[39]。
红树林主要有2种类型:沿岸型红树林和盆地红树林,沿岸型红树林生长在河口、三角洲水道、沿海泻湖和河流(称为河岸)边缘的倾斜斜坡上,易受到潮汐冲刷或河流流量的影响,而盆地红树林则生长在内陆地区较浅的洼地,潮汐冲刷频率较低[3]。Reis等的研究表明,相对于盆地红树林,沿岸型表现出较高的净氮矿化率,这可能是受到潮汐等其他因素影响[3]。氮矿化还会受到人类活动的影响,Queiroz等的研究表明红树林受养殖虾池尾水排放的影响,较高的N含量很容易被微生物利用,从而导致氮素矿化作用的增加[40]。氮矿化速率在夏季高于冬季,这可能是由于夏季温度较高,适宜氮矿化相关微生物的生长和繁殖[41]。目前,关于对红树林生态系统氮素矿化相关微生物的丰度、多样性等还需进一步研究。
2.3 硝化过程硝化作用(nitrification)一般是将NH4+-N转化为NO3–-N和NO2–-N,是沉积物表层中无机氮形成的关键环节,是影响氮循环的重要过程,常常发生在沉积物表层1–2 cm或洞穴附近的好氧表层[42]。但近年来发现硝化过程包括分步硝化过程与完全硝化过程(complete ammonia oxidation,Comammox)[43–44]。分步硝化过程中第一步的氨氧化过程即NH4+-N氧化为NO2−-N是限速步骤,由氨氧化细菌(ammonia oxidizing bacteria,AOB)和氨氧化古(ammonia oxidizing archaea,AOA)执行该过程;第二步将NO2–转化为NO3−的过程,由亚硝酸盐氧化细菌(nitrite oxidizing bacteria,NOB)进行[43, 45–46]。完全硝化过程(comammox)是自然界中新发现的硝化过程,comammox硝化菌有完整的硝化过程而不需分步进行硝化作用[44, 47]。Liu等在中国海南省儋州新英港自然保护区红树林中发现存在comammox硝化菌,归属于Nitrospira,具有耐盐性,且地理因素和沉积物性质都显著影响comammox的组成和氨氧化酶的丰度。虽目前的研究表明comammox硝化菌在红树林生态系统的丰度相对较低,但其在红树林生态系统中的作用不容忽视[47]。
AOA amoA基因丰度在红树林中心区域更高,这可能受植物根际的影响。另外,AOB和AOA丰度分布表现出明显的季节特征,一般AOB在冬季丰度较高,AOA则在夏季丰度较高。多种环境因子也可影响AOB和AOA的丰度分布,如pH和硝态氮等对AOB和AOA丰度的影响较大[48]。
红树林生态系统中硝化作用微生物类群多样性丰富,如已在红树林中发现的AOB菌属有Nitrosospira、β-proteobacterium和Nitrosomona等[49]。Cao等的研究发现红树林AOB多样性高于AOA,且AOB比AOA更具生长优势[50],但Marcos等在佛罗里达海岸红树林发现AOA的生物量超过AOB[51]。林娜在Mai Po红树林湿地中分析AOB群落结构的结果表明,Nitrosospira sp.为红树林湿地中AOB的优势菌属之一[49]。这些研究表明全球范围内不同位点的红树林AOA与AOB的生长优势不一致,可能与红树林树种、潮汐等有关。
2.4 厌氧氨氧化过程厌氧氨氧化(anammox)是红树林生态系统氮去除的有效途径之一[52]。厌氧氨氧化菌的分解代谢模式为NO2–在亚硝酸盐还原酶(nitrite reductase,Nir S)的作用下被还原为NO,在联氨合成酶(hydrazine synthase,HZS)催化NO和NH4+生成N2H4,最后N2H4在联氨脱氢酶(hydrazine dehydrogenase,HDH)的作用下转化为N2[53]。近年来,Hu等发现厌氧氨氧化细菌Kuenenia stuttgartiensis能直接以NO为电子受体,将NH4+转化为N2,不产生N2O等物质[54]。
Zhang等对张江河口红树林沉积物中厌氧氨氧化细菌的活性、丰度、垂直分布和作用进行分析,研究表明不同深度的红树林沉积物中广泛存在厌氧氨氧化菌,红树林沉积物上层的16S rRNA和hzsB基因的丰度范围都达到最大值,而且不同深度的红树林沉积物中潜在厌氧氨氧化速率范围不同,最大速率发生在70–100 cm红树林沉积层中[55]。而Li等在海南东寨港红树林的进一步研究发现,在40–45 cm沉积层的厌氧氨氧化细菌的丰度和多样性可能更高,Kuenenia和Scalindua等菌属可能在红树林生态系统的厌氧氨氧化过程中发挥着最重要的作用[56]。
2.5 反硝化过程反硝化作用(denitrification)是硝酸盐还原为亚硝酸盐,然后转化为N2的过程,是河口和海岸带生态系统氮素地球化学循环的关键步骤[42]。红树林系统中反硝化过程也是氮素去除的主要途径[57]。如大亚湾红树林中反硝化作用对总氮去除率贡献约为90%,而厌氧氨氧化过程其贡献率只有约10%[12]。王芬芳在福建省云霄县红树林中也证实反硝化对NO3−-N去除的贡献率达到90%以上,红树林沉积物中主要存在的氮转化过程是反硝化作用[11]。
关于反硝化菌的分布,红树林反硝化菌群落结构因地理位置而异,群落丰富度和多样性随着纬度的降低而增加[58]。植被和沉积物深度对反硝化菌的活性和丰度有较大影响,如植被极大地促进了反硝化活性和反硝化菌丰度,在0–5 cm沉积物中反硝化菌的活性和丰度更高[59]。这些结果说明反硝化菌的丰度可能易受维度、植被及沉积物深度的影响。
红树林生态系统中反硝化菌多样性丰富,包括好氧和厌氧型反硝化菌[57–58, 60]。林娜在Mai Po红树林湿地中筛选到12株好氧反硝化菌和8株厌氧反硝化菌,归属于9种不同的菌属,其中大部分对NO3−-N去除率较高[49]。Liao等在红树林中发现一株新型兼性厌氧型反硝化细菌(M9-3-2T),高浓度的KNO3能明显抑制其生长[61]。此外,Baskaran等发现细菌属如Halomonas、Labrenzia、Paracoccus、Nitratireductor、Bacillus、Virgibacillus、Shewanella和Staphylococcus有助于促进反硝化活性,并首次在红树林中发现Pseudomonas balearica、Pseudomonas bauzanensis、Labrenzia sp.和Paracoccus kondratievae在有氧条件下培养24 h内能将硝酸盐转化为气态氮,属于强反硝化菌[62]。这些发现表明红树林反硝化菌的多样性,且可能存在多种类型的反硝化菌尚未可知。
2.6 异化硝酸盐还原为铵过程异化硝酸盐还原成铵(dissimilatory nitrate reduction to ammonium,DNRA)首先将硝酸盐还原为亚硝酸盐,随后由nrfA基因编码的亚硝酸盐还原酶还原为铵[63–64]。DNRA是红树林重要的硝酸盐还原途径[65]。Fernandes等的研究发现红树林沉积物中高达99%的硝酸盐去除是通过DNRA作用。与受人为影响的红树林生态系统相比,原始红树林的DNRA作用过程相对较强,在接受低外来养分输入的系统中,这种机制使氮素有效地保存和再循环。在全球范围内,红树林中DNRA过程对于维持氮水平和维持生态系统生产力具有重要意义[15]。另外,脱硫杆菌是氮循环的重要参与者,它可以提供大量的硝酸盐或亚硝酸盐还原基因(特别是DNRA基因),有助于减少红树林生态系统中的氮污染[66]。
3 红树林氮循环耦合过程红树林微生物在碳、氮和硫循环中存在耦合过程,使它们各自的代谢反应具有灵活性,以促进红树林沉积物中生物地球化学循环的高效循环,这可能是红树林生态系统高效运行的保障[67]。Lin等在中国南部云霄红树林国家级自然保护区中发现Syntrophobacter、Sulfurovum、Nitrospira和Anaerolinea可能驱动C、N和S循环的耦合,甲烷代谢也充当了连接C循环与N和S循环的桥梁[67]。聂世清等首次发现红树林沉积物中硝酸盐还原与硫氧化(尤其是硫化物氧化)之间存在较强的偶联,并且硫化物含量与硝酸盐还原基因的丰度显著正相关[6],这个发现可能有利于研究解决红树林的氮污染问题。
硝化作用与反硝化作用的耦合是红树林生态系统脱氮的重要过程之一,主要发生在红树林表层土壤中,氨氮可以迁移到好氧-厌氧层的边界,硝化为NO3−作为反硝化菌的底物[68]。另外,近年来在红树林湿地发现了厌氧氨氧化与铁(Fe3+)还原耦合(feammox)的新型脱氮过程,它以N2、亚硝酸盐或硝酸盐作为最终产物的feammox脱氮过程,红树林沉积物的中度还原环境也有利于Fe3+的还原和feammox反应[69–71]。虽然目前研究的feammox在红树林生态系统的氮去除贡献相对较少,但feammox作为脱氮机制之一在红树林生态系统中具有重要的作用[69–70],此后对红树林脱氮作用可能会有新的认识,这也将成为未来主要研究方向之一。
4 红树林氮素循环过程的环境影响因素红树林中的环境因素会影响氮循环相关微生物的生长、丰度、多样性及氮循环速率,如表 2所示,盐度、季节、螃蟹活动、红树林树种和树龄、温度、有机物及潮汐等环境因素不同程度影响地红树林生态系统的脱氮速率、参与氮循环微生物的丰度等。明确环境因素对红树林生态系统氮循环的影响,有利于我们发现参与氮循环微生物的生长特性、分布特点、多样性及脱氮特性,为后续保护和修复世界各地域的红树林生态系统提供理论参考。
Environmental factors | Variation trends | Results | References |
Salinity | Increasing salinity within a certain range | Nitrogen removal rates decreased. | [66] |
The activity of denitrifying enzymes and the number of denitrifying bacteria reduced. | [72] | ||
Nitrification was inhibited. | [72] | ||
DNRA process was enhanced. | [73] | ||
– | Nitrogen-fixing bacteria tolerate a certain degree of salt. | [27] | |
Season | Summer (rainy season) | Nitrite reductase gene-nirS and nitrate reductase gene-narG showed high absolute abundance. | [6] |
AOB plays a leading role in nitrification. | [48] | ||
Abundance of dominant genus Scalindua in anammox bacteria decreased significantly. | [56] | ||
– | Denitrification: spring > summer > autumn. | [74] | |
– | DNRA process: summer > autumn > spring. | [74] | |
Winter (dry season) | AOA plays a leading role in nitrification. | [48] | |
Crab activities | Cave digging behavior (cave dwelling) | AOA and AOB genes showed high abundance in sediments around crab holes. Nitrification was promoted. |
[75] |
Mineralization of organic nitrogen in sediments was accelerated around crab holes. | [76] | ||
N2 fixation was inhibited. | [77–78] | ||
Tree species and age of mangrove | Mature mangrove forest | Nitrogen fixation was promoted. | [26, 78] |
Different mangrove species | Microbes involved in nitrogen cycling were selected. | [79] | |
Temperature | High temperature (35 ℃) | Fixed rate of nitrogen was low. | [78] |
Tide | – | The DNRA rate on the coast of mangrove beach was higher than that on the coast. | [74] |
Ebbing tide | The proportions of NH4+-N and DON increased, while the proportions of NO3−-N and NO2−-N decreased, which was opposite during the flood period. | [11] | |
Organic matters | High concentration of PBDEs | The growth of anammox bacteria was limited. | [80] |
“–” indicates no specific variation trend. |
4.1 咸水入侵
盐度会影响红树林氮循环速率,当盐度较高时,海水中的NaCl和SO42−等化学物质可能会抑制微生物活动,导致脱氮速率下降[66]。Wang等在九龙江河口滩涂红树林湿地发现,在中等盐度条件下反硝化细菌数量最多,随着盐度的升高反硝化酶活性和反硝化细菌数量都逐渐降低。在中等盐度水平下,AOB的丰度增加,而AOA的丰度受影响较小,且在较高盐度水平下NH4+消耗的减少,表明其高盐度抑制了硝化作用[72]。另外,盐度增加可刺激DNRA中NO3−还原为NH4+,导致NH4+增加,说明在高盐度条件下,NO3−还原存在另一种途径(DNRA),同时盐度的增加也促进了反硝化过程中溶解N2O的积累,即在高盐度下抑制硝化作用而增强DNRA和反硝化作用[73]。Shiau等在中国台北红树林湿地土壤中研究发现,红树林土壤盐浓度升高而固氮酶活性没有降低,红树林土壤中的固氮细菌可能适应了盐水环境且能耐受海水中一定程度上的盐分[27]。这些结果说明咸水入侵对红树林氮循环影响较大,盐度的增加可能不同程度地影响氮循环相关微生物的活性,进而影响红树林氮循环相关反应进程。
4.2 季节季节会影响红树林环境的温度、降雨量及湿度,从而影响微生物的生长[66]。王芬芳的研究发现,红树林潮沟中的氮浓度有季节性差异,如NH4+-N浓度春季和冬季高于夏季,秋季浓度最低,而NO3-N浓度在夏季最高。NO2-N在春季浓度最高,最低浓度在秋季[11],这些氮浓度特异性差异可能影响红树林氮循环过程及其微生物的生长。聂世清等在中国北部湾红树林沉积物中研究表明,雨季的氮代谢活性显著高于旱季,如亚硝酸盐还原酶基因-nirS、硝酸盐还原酶基因-narG的绝对丰度都是在雨季较高[6]。罗晴等对海南省三亚河红树林的研究发现,硝化作用中AOA和AOB分别在冬季和夏季起主导作用[48]。另外,红树林中的反硝化作用也体现出明显的季节变化,主要为春季 > 夏季 > 秋季,DNRA作用表现的季节变化主要为夏季 > 秋季 > 春季[74]。Li等研究发现海南东寨港红树林湿地沉积物中厌氧氨氧化细菌多样性和丰度呈明显季节变化规律,如雨季的降雨和径流较多,使红树林盐度下降,从而导致了厌氧氨氧化细菌优势菌属Scalindua丰度显著下降[56]。这些结果表明季节可能通过影响酶的活性、氮浓度大小、氮循环相关微生物丰度等,从而影响红树林氮循环过程。
4.3 螃蟹活动螃蟹是红树林生态系统中主要的底栖动物之一。如图 2所示,螃蟹的活动,例如挖洞(穴居),可能会直接影响红树林土壤的性质,从而影响微生物氮循环过程[82–83]。此外,底泥动物的活动会导致NH4+浓度和氧-缺氧界面的增加以及NO2+和NO3+的减少, 从而间接影响氮循环速率[84]。Cheng等对中国湛江高桥镇东村红树林的研究表明,螃蟹洞较多的区域具有较高的硝化速率和NO3−含量,螃蟹洞的存在可以直接促进红树林湿地土壤硝化作用[75]。Li等利用蟹箱模拟滨海潮滩(包括红树林湿地)土壤中的螃蟹活动,研究其对有机氮矿化的影响,结果表明螃蟹的穴居活动增加了沉积物与大气的接触面积,从而加速洞穴周围沉积物表面的有机氮矿化[76]。螃蟹活动虽可促进红树林氮循环过程,但也存在抑制现象。红树林中螃蟹的穴居活动使氧气到达更深的缺氧沉积层,增加了洞穴周围沉积物中的氧气浓度和氧化还原电位,但固氮酶活性需要厌氧条件,螃蟹穴居活动可能不利于N2固定[77, 85]。此外,螃蟹可以通过摄食行为限制N2固定,改变沉积物中的微生物群落,Qashqari等在红树林沉积物中低密度和高密度螃蟹之间的研究表明,螃蟹摄食蓝藻行为可减少红树林生态系统中的N2固定[78]。这些影响结果表明螃蟹活动可能对红树林氮循环过程有两面性,有利方面是促进硝化作用和氮素矿化,不利方面是抑制N2固定,其中螃蟹洞穴使红树林沉积物与大气的接触面积增加的情况,除影响上述提及的氮循环反应过程外,也可能影响其他氮循环过程,这有待进一步研究。
![]() |
图 2 红树林螃蟹及其穴居活动[75, 81] Figure 2 Mangrove crabs and their burrowing activities[75, 81]. A: crab cave of mudflat on the edge of mangrove in Gaoqiao Town, Zhanjiang, China. B: mud-covered crabs and their caves in Qatar mangroves. C: mangrove crabs and their caves in Gaoqiao Town, Zhanjiang, China. D: mud-covered crabs in Qatar mangroves. |
4.4 红树林树种和树龄
红树林物种和各种环境变量在不同群落的形成方面发挥了重要作用,大多数固氮菌在红树林物种之间存在显著差异;不同物种和不同生理条件下的红树林分泌不同类型的有机质可能影响固氮菌固氮能力和群落形成[79]。Zhang等人研究表明红树林树种对根际微生物群落有显著的影响,不同树种对不同的参与氮循环的微生物菌落有选择性[79]。此外,红树林植物的树龄和根际发育等的差异对红树林沉积物N2固定率有显著影响,成熟红树林氮的固定率高于幼年红树林[78],这可能因为成熟的红树林根系比较发达及周围沉积物有机质含量较高等,提供了更适宜的生物地球化学条件,有利于固氮微生物群落形成[10, 26]。这些影响表明每一棵红树林树木及其周围环境对微生物来说都可能是一个微环境,例如不同红树林树种或不同树龄的树木分泌的有机质对固氮作用影响较为明显。
4.5 其他环境影响因素受潮汐作用影响,潮汐水中含有大量NO3−-N,为红树林中DNRA作用提供重要的底物,导致红树林滩靠海侧的DNRA速率高于海岸侧[74]。王芬芳的研究发现在退潮期间,NH4-N和溶解有机氮(dissolved organic nitrogen,DON)的占比逐渐增加,NO3−-N和NO2−-N的占比逐渐下降,涨潮期间则相反,这可能会影响红树林氮去除的速率[11]。当温度较高时,氮的固定速率较低,如在28 ℃时的固定速率比35 ℃时高10倍,在35 ℃时N2固定速率几乎为零[78],温度在调节氮固定速率中起着至关重要的作用。此外,人为活动导致红树林的化学物质成分增加,也是影响红树林氮素循环的重要因素,例如较高浓度的多溴联苯醚(poly brominated diphenyl ethers,PBDEs)也会导致红树林土壤NO3−浓度降低,抑制厌氧氨氧化底物的利用效率,限制厌氧氨氧化菌的生长[80]。这些研究表明红树林氮循环过程受较多环境因子的影响,值得深入探索,这可为明确红树林物质循环过程的发生与作用机制奠定理论基础。
5 展望红树林沉积物中存在众多已知和未知的微生物发挥氮素转化功能,超过2 000种物种具有氮素转化相关基因,这表明复杂的氮循环是众多微生物活动的结果,同时也表明红树林生态系统中氮循环微生物的多样性丰富[66]。然而,目前红树林生态系统氮循环相关微生物的研究需进一步扩展,特别是参与氮素矿化和亚硝酸氧化的微生物,确定更多参与氮循环微生物种类及其特点是未来应该注重的方面。
红树林中氮循环过程之间、氮循环过程与特殊物质、氮循环与其他物质循环反应过程可能存在相互促进或抑制作用,例如厌氧氨氧化与铁(Fe3+)的耦合作用,铁(Fe3+)浓度增加明显提高feammox的反应速率[70],硫酸盐还原和硫氧化可能会驱动氮的转化[86]。因此,红树林生态系统土壤微生物驱动的氮生物地球化学过程与耦合作用机制以及驱动红树林生态系统氮循环的微生物代谢机制研究将成为今后红树林生物与地球化学研究的重要方向。
目前,虽有研究证明盐度、pH、温度和树龄等影响因子对红树林微生物驱动的氮循环过程有影响,但其作用机理大部分尚未明确,今后还需着重研究红树林氮循环过程发生的影响因素及其作用机理,为保护红树林生态系统提供更加重要与高价值的理论参考。
[1] | Kulkarni SO, Shouche YS. Mangrove Ecosystem and Microbiome. Boca Raton, Florida, America: CRC Press, 2021. |
[2] | Hamilton SE, Casey D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 2016, 25(6): 729-738. DOI:10.1111/geb.12449 |
[3] | Reis CRG, Nardoto GB, Rochelle ALC, Vieira SA, Oliveira RS. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia, 2017, 183(3): 841-848. DOI:10.1007/s00442-016-3789-9 |
[4] | Akber MA, Patwary MM, Islam MA, Rahman MR. Storm protection service of the Sundarbans mangrove forest, Bangladesh. Natural Hazards, 2018, 94(1): 405-418. DOI:10.1007/s11069-018-3395-8 |
[5] |
Han WD, Gao XM, Lu CY, Lin P. The ecological values of mangrove ecosystems in China. Ecologic Science, 2000, 19(1): 40-46.
(in Chinese) 韩维栋, 高秀梅, 卢昌义, 林鹏. 中国红树林生态系统生态价值评估. 生态科学, 2000, 19(1): 40-46. DOI:10.3969/j.issn.1008-8873.2000.01.007 |
[6] | 聂世清. 亚热带北部湾红树林生态系统中氮循环的宏基因组学研究. 广西大学硕士学位论文, 2021. |
[7] |
Yang YN, Liu J, Thiri M. Monitoring and evaluation of mangrove wetland pollution in Dongzhai Harbor of Hainan. Marine Environmental Science, 2020, 39(3): 399-406.
(in Chinese) 杨玉楠, 刘晶, Myat Thiri. 海南东寨港红树林湿地污染监测与评价研究. 海洋环境科学, 2020, 39(3): 399-406. |
[8] | Alongi DM, Christoffersen P, Tirendi F. The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. Journal of Experimental Marine Biology and Ecology, 1993, 171(2): 201-223. DOI:10.1016/0022-0981(93)90004-8 |
[9] | Thatoi H, Behera BC, Mishra RR, Dutta SK. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology, 2013, 63(1): 1-19. DOI:10.1007/s13213-012-0442-7 |
[10] | Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils, 2001, 33(4): 265-278. DOI:10.1007/s003740000319 |
[11] | 王芬芳. 红树林-河口系统氮转化与横向输出的主控过程. 厦门大学硕士学位论文, 2019. |
[12] | Xiao K, Wu JP, Li HL, Hong YG, Wilson AM, Jiao JJ, Shananan M. Nitrogen fate in a subtropical mangrove swamp: potential association with seawater-groundwater exchange. Science of the Total Environment, 2018, 635: 586-597. DOI:10.1016/j.scitotenv.2018.04.143 |
[13] | Saenger P. Mangrove Ecology, Silviculture and Conservation. The Netherlands: Kluwer Academic Press, 2002. |
[14] | Alongi DM. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 2008, 76(1): 1-13. DOI:10.1016/j.ecss.2007.08.024 |
[15] | Fernandes SO, Bonin PC, Michotey VD, Garcia N, LokaBharathi PA. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium. Scientific Reports, 2012, 2: 419. DOI:10.1038/srep00419 |
[16] | 翁诗超, 吕烈武, 陈理, 吴琼泽. 海南红树林地区土壤的特点及利用. 海南社会科学界联合会. 第二届中国(海南)生态文化论坛论文集. 海南社会科学界联合会: 海南社会科学界联合会, 2005: 244-246. |
[17] |
Xu H, Chen SB, Zhang SX, Qiu JB, Huang XL. Basic characteristics and development prospect of mangrove soil and its correlation with mangrove. Journal of Anhui Agricultural Sciences, 2008, 36(4): 1496-1497.
(in Chinese) 徐海, 陈少波, 张素霞, 仇建标, 黄晓林. 红树林土壤基本特征及发展前景. 安徽农业科学, 2008, 36(4): 1496-1497. DOI:10.3969/j.issn.0517-6611.2008.04.099 |
[18] |
Yang PR, He JH, Liu TH. Mangrove and it's soil. Journal of Natural Resources, 1987, 2(1): 32-37.
(in Chinese) 杨萍如, 何金海, 刘腾辉. 红树林及其土壤. 自然资源学报, 1987, 2(1): 32-37. DOI:10.3321/j.issn:1000-3037.1987.01.004 |
[19] |
Luo SY, Chen DP, Chen BS, Quan XW, Ke SY. Application of mineral analysis in mangrove wetland soils. Journal of Instrumental Analysis, 2019, 38(7): 823-829.
(in Chinese) 罗松英, 陈东平, 陈碧珊, 全晓文, 柯思茵. 红树林湿地土壤矿物的分析. 分析测试学报, 2019, 38(7): 823-829. DOI:10.3969/j.issn.1004-4957.2019.07.009 |
[20] |
Wang XQ, Wang J, Chen XT. Study on physi-chemical properties of the saline soil of mangroves at Dongzhaigang, Hainan Island. Chinese Journal of Tropical Agriculture, 2008, 28(3): 32-37.
(in Chinese) 王小青, 王健, 陈雄庭. 海南岛东寨港红树林盐土的理化性状. 热带农业科学, 2008, 28(3): 32-37. DOI:10.3969/j.issn.1009-2196.2008.03.009 |
[21] |
Zhang P, Xie XJ, Li QH, Gan ZY, Hu T, Yang J, Deng YM, Gan YQ, Zhang YP. Microbial community structure and its response to environment in mangrove sediments of Dongzhai Port. Earth Science, 2022, 47(3): 1122-1135.
(in Chinese) 张攀, 谢先军, 黎清华, 甘致远, 胡甜, 杨渐, 邓娅敏, 甘义群, 张彦鹏. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 2022, 47(3): 1122-1135. |
[22] |
Zhang YB, Lin P, Zhuang TC. Temporal and spacial distribution of microbial densities of soil in mangrove forest in Jiulongjiang Estuary. Journal of Xiamen University: Natural Science, 2007, 46(4): 587-592.
(in Chinese) 张瑜斌, 林鹏, 庄铁诚. 九龙江口红树林土壤微生物的时空分布. 厦门大学学报: 自然科学版, 2007, 46(4): 587-592. DOI:10.3321/j.issn:0438-0479.2007.04.033 |
[23] |
Niu AY, Ma JJ, Yang WH, Huang JH, Xu SJ. Effects of soil physical and chemical properties on the mass fractions of nitrogen and phosphorus in soil of mangrove wetland in the Pearl River Estuary. Journal of South China Normal University: Natural Science Edition, 2019, 51(2): 86-94.
(in Chinese) 牛安逸, 马姣娇, 杨文槐, 黄金辉, 徐颂军. 土壤理化性质对珠江口红树林湿地土壤氮磷质量分数的影响. 华南师范大学学报: 自然科学版, 2019, 51(2): 86-94. |
[24] | Alongi DM. Present state and future of the world's mangrove forests. Environmental Conservation, 2002, 29(3): 331-349. DOI:10.1017/S0376892902000231 |
[25] | Sengupta A, Chaudhuri S. Ecology of heterotrophic dinitrogen fixation in the rhizosphere of mangrove plant community at the Ganges River Estuary in India. Oecologia, 1991, 87(4): 560-564. DOI:10.1007/BF00320420 |
[26] | Inoue T, Shimono A, Akaji Y, Baba S, Takenaka A, Tuck Chan H. Mangrove-diazotroph relationships at the root, tree and forest scales: diazotrophic communities create high soil nitrogenase activities in Rhizophora stylosa rhizospheres. Annals of Botany, 2019, 125(1): 131-144. |
[27] | Shiau YJ, Lin MF, Tan CC, Tian GL, Chiu CY. Assessing N2 fixation in estuarine mangrove soils. Estuarine, Coastal and Shelf Science, 2017, 189: 84-89. DOI:10.1016/j.ecss.2017.03.005 |
[28] | Reis CRG, Nardoto GB, Oliveira RS. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant and Soil, 2017, 410(1/2): 1-19. |
[29] | Masunari S. Distribuição abundância dos caranguejos Uca leach (Crustacea, Decapoda, Ocypodidae) na baía de guaratuba, paraná, Brasil. Revista Brasileira De Zoologia, 2006, 23(4): 901-914. DOI:10.1590/S0101-81752006000400001 |
[30] | Zilius M, Bonaglia S, Broman E, Chiozzini VG, Samuiloviene A, Nascimento FJA, Cardini U, Bartoli M. N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Scientific Reports, 2020, 10: 13966. DOI:10.1038/s41598-020-70834-0 |
[31] | Shiau YJ, Lin YT, Yam RSW, Chang EH, Wu JM, Hsu TH, Chiu CY. Composition and activity of N2-fixing microorganisms in mangrove forest soils. Forests, 2021, 12(7): 822. DOI:10.3390/f12070822 |
[32] | Rameshkumar N, Lang E, Nair S. Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 1): 11789-186. |
[33] | Alfaro-Espinoza G, Ullrich MS. Marinobacterium mangrovicola sp. nov., a marine nitrogen-fixing bacterium isolated from mangrove roots of Rhizophora mangle. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 12): 3988-3993. |
[34] | Huang XF, Liu YJ, Dong JD, Qu LY, Zhang YY, Wang FZ, Tian XP, Zhang S. Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_3): 875-881. DOI:10.1099/ijs.0.052779-0 |
[35] | Hu YZ, Guo Y, Lai QL, Dong L, Huang ZB. Draconibacterium mangrovi sp. nov., isolated from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(8): 4816-4821. DOI:10.1099/ijsem.0.004354 |
[36] | Huang ZB, Hu YZ, Lai QL, Guo Y. Description of Maribellus sediminis sp. nov., a marine nitrogen-fixing bacterium isolated from sediment of cordgrass and mangrove. Systematic and Applied Microbiology, 2020, 43(4): 126099. DOI:10.1016/j.syapm.2020.126099 |
[37] | 吴婕. 红树林沉积物中Vibrio ziniensis新种鉴定及其复杂多糖降解特性研究. 自然资源部第三海洋研究所硕士学位论文, 2021. |
[38] | 沈庄. 盐分对辽河口滨海湿地土壤氮矿化的影响. 沈阳大学硕士学位论文, 2019. |
[39] | Reddy Y, Ganguly D, Singh G, Prasad MH, Arumughan PS, Banerjee K, Kathirvel A, Ramachandran P, Ramachandran R. Assessment of bioavailable nitrogen and phosphorus content in the sediments of Indian mangroves. Environmental Science and Pollution Research International, 2021, 28(31): 42051-42069. DOI:10.1007/s11356-021-13638-7 |
[40] | Queiroz HM, Ferreira TO, Taniguchi CAK, Barcellos D, Do Nascimento JC, Nóbrega GN, Otero XL, Artur AG. Nitrogen mineralization and eutrophication risks in mangroves receiving shrimp farming effluents. Environmental Science and Pollution Research International, 2020, 27(28): 34941-34950. DOI:10.1007/s11356-020-09720-1 |
[41] | Yang XL, Hu CY, Wang B, Lin H, Xu YP, Guo H, Liu GZ, Ye JQ, Gao DZ. Sediment nitrogen mineralization and immobilization affected by non-native Sonneratia apetala plantation in an intertidal wetland of South China. Environmental Pollution, 2022, 305: 119289. DOI:10.1016/j.envpol.2022.119289 |
[42] |
Xu JR, Wang YS, Sun S. The characteristics of nitrogen fixation, ammonification, nitrification and denitrification in coastal zones. Acta Ecologica Sinica, 2004, 24(12): 2907-2914.
(in Chinese) 徐继荣, 王友绍, 孙松. 海岸带地区的固氮、氨化、硝化与反硝化特征. 生态学报, 2004, 24(12): 2907-2914. DOI:10.3321/j.issn:1000-0933.2004.12.036 |
[43] |
Yang XQ, Lian YL, Yan QY, He ZL. Microbially-driven nitrogen cycling in coastal ecosystems. Acta Microbiologica Sinica, 2018, 58(4): 633-648.
(in Chinese) 杨雪琴, 连英丽, 颜庆云, 贺志理. 滨海湿地生态系统微生物驱动的氮循环研究进展. 微生物学报, 2018, 58(4): 633-648. |
[44] | Van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Den Camp HJMO, Kartal B, Jetten MSM, Lücker S. Complete nitrification by a single microorganism. Nature, 2015, 528(7583): 555-559. DOI:10.1038/nature16459 |
[45] | Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environmental Microbiology, 2012, 14(2): 525-539. DOI:10.1111/j.1462-2920.2011.02666.x |
[46] | Soliman M, Eldyasti A. Ammonia-oxidizing bacteria (AOB): opportunities and applications-a review. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 285-321. DOI:10.1007/s11157-018-9463-4 |
[47] | Liu ZB, Zhang CJ, Wei QY, Zhang SY, Quan ZX, Li M. Temperature and salinity drive comammox community composition in mangrove ecosystems across southeastern China. Science of the Total Environment, 2020, 742: 140456. DOI:10.1016/j.scitotenv.2020.140456 |
[48] |
Luo Q, Zhen Y, Peng ZB, He H. Distribution and potential nitrification rates of aerobic ammonia-oxidizing microorganisms in surface sediments of mangrove in Sanya River. Environmental Science, 2020, 41(8): 3787-3796.
(in Chinese) 罗晴, 甄毓, 彭宗波, 贺惠. 三亚河红树林表层沉积物中好氧氨氧化微生物的分布特征及潜在硝化速率. 环境科学, 2020, 41(8): 3787-3796. |
[49] | 林娜. 红树林湿地中脱氮微生物脱氮特性及其种群结构分析. 华南理工大学硕士学位论文, 2011. |
[50] | Cao HL, Li M, Hong YG, Gu JD. Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Systematic and Applied Microbiology, 2011, 34(7): 513-523. DOI:10.1016/j.syapm.2010.11.023 |
[51] | Marcos MS, Barboza AD, Keijzer RM, Laanbroek HJ. Tide as steering factor in structuring archaeal and bacterial ammonia-oxidizing communities in mangrove forest soils dominated by Avicennia germinans and Rhizophora mangle. Microbial Ecology, 2018, 75(4): 997-1008. DOI:10.1007/s00248-017-1091-y |
[52] |
Liu L, Ming YZ, Lü AP, Jiao JY, Li WJ. Research progress of anaerobic ammonium oxidation bacteria. Acta Microbiologica Sinica, 2021, 61(04): 969-986.
(in Chinese) 刘兰, 明语真, 吕爱萍, 焦建宇, 李文均. 厌氧氨氧化细菌的研究进展. 微生物学报, 2021, 61(04): 969-986. |
[53] |
Wang YY, Li L, Ma X, Lin XM, Pan ML, Dai XH. Bio-characteristics of anammox bacteria and CANON anammox process. Acta Scientiae Circumstantiae, 2014, 34(6): 1362-1374.
(in Chinese) 王亚宜, 黎力, 马骁, 林喜茂, 潘绵立, 戴晓虎. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺. 环境科学学报, 2014, 34(6): 1362-1374. |
[54] | Hu ZY, Wessels HJCT, Van Alen T, Jetten MSM, Kartal B. Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 2019, 10: 1244. DOI:10.1038/s41467-019-09268-w |
[55] | Zhang MP, Dai PL, Lin XL, Lin LA, Hetharua B, Zhang YM, Tian Y. Nitrogen loss by anaerobic ammonium oxidation in a mangrove wetland of the Zhangjiang Estuary, China. Science of the Total Environment, 2020, 698: 134291. DOI:10.1016/j.scitotenv.2019.134291 |
[56] | Li P, Li SN, Zhang Y, Cheng HM, Zhou HL, Qiu LG, Diao XP. Seasonal variation of anaerobic ammonium oxidizing bacterial community and abundance in tropical mangrove wetland sediments with depth. Applied Soil Ecology, 2018, 130: 149-158. DOI:10.1016/j.apsoil.2018.06.009 |
[57] | Zhao L, Fu G, Tang J, Wu JF, Pang WC, Guo ZP. Efficient nitrogen removal of mangrove constructed wetlands: enhancing heterotrophic nitrification-aerobic denitrification microflora through quorum sensing. Chemical Engineering Journal, 2022, 430: 133048. DOI:10.1016/j.cej.2021.133048 |
[58] | Li RL, Wu SJ, Chai MW, Xie SG. Denitrifier communities differ in mangrove wetlands across China. Marine Pollution Bulletin, 2020, 155: 111160. DOI:10.1016/j.marpolbul.2020.111160 |
[59] | Wang HT, Su JQ, Zheng TL, Yang XR. Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Applied Microbiology and Biotechnology, 2014, 98(22): 9375-9387. DOI:10.1007/s00253-014-6017-8 |
[60] | Fu G, Han J, Yu T, Huangshen L, Zhao L. The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. Journal of Environmental Management, 2019, 238: 1-9. |
[61] | Liao H, Qu MM, Hou XY, Lin XL, Li H, Duan CS, Tian Y. Nitrogeniibacter mangrovi gen. nov., sp. nov., a novel anaerobic and aerobic denitrifying betaproteobacterium and reclassification of Azoarcus pumilus as Aromatoleum pumilum comb. nov.. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(8): 004946. |
[62] | Baskaran V, Prabavathy VR. Diverse key nitrogen cycling genes nifH, nirS and nosZ associated with Pichavaram Mangrove rhizospheres as revealed by culture-dependent and culture-independent analyses. Archives of Microbiology, 2022, 204(1): 109. DOI:10.1007/s00203-021-02661-4 |
[63] | Li QX, Bu CN, Ahmad HA, Guimbaud C, Gao BY, Qiao ZM, Ding SW, Ni SQ. The distribution of dissimilatory nitrate reduction to ammonium bacteria in multistage constructed wetland of Jining, Shandong, China. Environmental Science and Pollution Research International, 2021, 28(4): 4749-4761. DOI:10.1007/s11356-020-10709-z |
[64] | Bu CN, Wang Y, Ge CH, Ahmad HA, Gao BY, Ni SQ. Dissimilatory nitrate reduction to ammonium in the Yellow River Estuary: rates, abundance, and community diversity. Scientific Reports, 2017, 7: 6830. DOI:10.1038/s41598-017-06404-8 |
[65] | Cao WZ, Yang JX, Li Y, Liu BL, Wang FF, Chang CT. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China. Marine Pollution Bulletin, 2016, 110(1): 155-161. DOI:10.1016/j.marpolbul.2016.06.068 |
[66] | Nie SQ, Zhang ZF, Mo SM, Li JH, He S, Kashif M, Liang ZW, Shen PH, Yan B, Jiang CJ. Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf. Science of the Total Environment, 2021, 769: 144562. DOI:10.1016/j.scitotenv.2020.144562 |
[67] | Lin XL, Hetharua B, Lin L, Xu H, Zheng TL, He ZL, Tian Y. Mangrove sediment microbiome: adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao Mangrove national nature reserve, China. Microbial Ecology, 2019, 78(1): 57-69. DOI:10.1007/s00248-018-1261-6 |
[68] | Chiu CY, Lee SC, Chen TH, Tian GL. Denitrification associated N loss in mangrove soil. Nutrient Cycling in Agroecosystems, 2004, 69(3): 185-189. DOI:10.1023/B:FRES.0000035170.46218.92 |
[69] | 官庆松. 红树林沉积物中铁还原耦合厌氧氨氧化导致的氮流失研究. 厦门大学博士学位论文, 2019. |
[70] | Guan QS, Cao WZ, Wang M, Wu GJ, Wang FF, Jiang C, Tao YR, Gao Y. Nitrogen loss through anaerobic ammonium oxidation coupled with iron reduction in a mangrove wetland. European Journal of Soil Science, 2018, 69(4): 732-741. DOI:10.1111/ejss.12552 |
[71] |
Guan QS. Physical and chemical properties of mangrove sediments in Jiulongjiang Estuary. Forest Science and Technology, 2022, 2022(5): 19-24.
(in Chinese) 官庆松. 九龙江河口红树林沉积物理化性质分析. 林业科技通讯, 2022, 2022(5): 19-24. |
[72] | Wang HT, Gilbert JA, Zhu YG, Yang XR. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment, 2018, 631/632: 1342-1349. DOI:10.1016/j.scitotenv.2018.03.102 |
[73] | Xie RR, Rao PY, Pang Y, Shi CC, Li JB, Shen DD. Salt intrusion alters nitrogen cycling in tidal reaches as determined in field and laboratory investigations. Science of the Total Environment, 2020, 729: 138803. DOI:10.1016/j.scitotenv.2020.138803 |
[74] | 杨晶鑫. 基于氮稳定同位素的我国福建红树林沉积物氮还原过程研究. 厦门大学硕士学位论文, 2017. |
[75] | Cheng H, Jiang ZY, Ma XX, Wang YS. Nitrogen dynamics in the mangrove sediments affected by crabs in the intertidal regions. Ecotoxicology: London, England, 2020, 29(6): 669-675. |
[76] | Li JL, Hua GF, Liu SQ, Liu XD, Huang YY, Shi Y. Effects of crab disturbance on nitrogen migration and transformation in a coastal tidal flat wetland. Environmental Science and Pollution Research International, 2021, 28(37): 52345-52356. |
[77] | Booth JM, Fusi M, Marasco R, Mbobo T, Daffonchio D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Scientific Reports, 2019, 9: 3749. |
[78] | Qashqari MS, Garcias-Bonet N, Fusi M, Booth JM, Daffonchio D, Duarte CM. High temperature and crab density reduce atmospheric nitrogen fixation in Red Sea mangrove sediments. Estuarine, Coastal and Shelf Science, 2020, 232: 106487. |
[79] | Zhang YY, Yang QS, Ling J, Van Nostrand JD, Shi Z, Zhou JZ, Dong JD. Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Frontiers in Microbiology, 2017, 8: 2032. |
[80] | Chen J, Zhou HC, Pan Y, Shyla FS, Tam NFY. Effects of polybrominated diphenyl ethers and plant species on nitrification, denitrification and anammox in mangrove soils. Science of the Total Environment, 2016, 553: 60-70. |
[81] | Al-Khayat JA, Giraldes BW. Burrowing crabs in arid mangrove forests on the southwestern Arabian Gulf: ecological and biogeographical considerations. Regional Studies in Marine Science, 2020, 39: 101416. |
[82] | Kristensen E, Alongi DM. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography, 2006, 51(4): 1557-1571. |
[83] | Ferreira TO, Otero XL, Vidal-Torrado P, Macías F. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma, 2007, 142(1/2): 36-46. |
[84] | Chen J, Gu JD. Faunal burrows alter the diversity, abundance, and structure of AOA, AOB, anammox and n-damo communities in coastal mangrove sediments. Microbial Ecology, 2017, 74(1): 140-156. |
[85] | Goldberg I, Nadler V, Hochman A. Mechanism of nitrogenase switch-off by oxygen. Journal of bacteriology, 1987, 169(2): 874-879. |
[86] | Li L, Peng CY, Yang ZC, He Y, Liang M, Cao HM, Qiu QH, Song JJ, Su YL, Gong B. Microbial communities in swamps of four mangrove reserves driven by interactions between physicochemical properties and microbe in the North Beibu Gulf, China. Environmental Science and Pollution Research International, 2022, 29(25): 37582-37597. |